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                                Linda
    

    
       Linda is a parallel processing coordination language.  To most computer 
scientists and engineers, this is a new concept.  Commonly, sequential 
languages such as C and Pascal are enhanced to support parallel processing;
Concurrent C and Parallel Pascal are two such languages.  However, if we 
look at the actual code that makes up a parallel application we see that not 
all of the code is parallel.  It can't be.  If a parallel application was completely
parallel, one instruction would be executed on each machine.  This is not 
reasonable of course.  Parallel programs are written such that certain pieces 
of code are farmed off to other processors while  other code is executed on 
the host machine to pull all of the pieces together.  Now there are  machines 
where this is not true but we will not discuss those.  These pieces of code 
farmed to  other processor are typically small and perform a specific
operation on some data.  They are  commonly called processes.    Let's look 
at a common real world situation to put these ideas  together.

    Large, busy offices in a corporation usually are made up of many different 
people doing  some task or process.  If we were to let this office run itself, it 
would become a mess in a very  short time.  Some people would be doing 
tasks that had already been done.  There would be  miscommunication.  You 
can probably think of many more things that could go wrong.  What  this 
office needs is an office manager.  An office manager isn is responsible for 
pulling the  individual people into a working team.  Each team member 
working for the greater good of the  corporation.

The Language Linda

    The same can be said for Linda.  Linda is a language developed at YALE 
University and  is copyrighted by Scientific Computing Associates, Inc.  Linda 
however lacks the common  features you and I commonly think of when we 
hear about a new language.  There are no loops,  decisions, records, etc in 
Linda.  All of these common functions are provided in some other  language 
used in conjunction with Linda.  This language could be C, Pascal, Forth or 
any other  language.  The primitive functions of Linda are coded in a
particular language and can be used  just as any other statement can be 
used.  

    Linda coordinates the activities of many different executing processes on 
different  machines.  As we will see later, these machines do not have to be a
single parallel machine such  as the Connection Machine.  The Linda system 
we will be using coordinates the activities of  different processes running on 
IBM PCs connected by an ethernet local area network.



    As we describe some of the characteristics and feature of Linda, we will 
introduce our  version of Linda called PCS-Linda.  There are features of Linda 
that can be difficult to  implement on top of an existing language and 
compiler therefore, we have not implemented  everything  in our version.

Linda Primitives

    It may be surprising to find out that Linda has just six instructions.  These 
six instructions  are in, out, rd, eval, inp, rdp.  Each of which will be discussed
in detail later in this section.   First we must talk about how Linda coordinates
processes.  Linda uses a distributed data structure  called a tuple.  A tuple is 
a data structure that can be accessed by any process thus the distributed  
part.  

Tuples

    Tuples have two parts: a name and some number of elements.  The name 
of a tuple is any  combination of up to sixteen
characters.  The name serves as the primary matching characteristic  for the 
tuples.  

                   ( name, e1, e2, e3, e4, e5, e6 )

    The name can be either a variable ( string ) or enclosed in single quotes.  
The elements are  filled from left to right, 

Elements

    A tuple can have from zero to six elements.  Each of the elements will be a
value or  variable of a particular type
supported in the host language Linda is coded in.  In PCS-Linda the  types 
can be integer, real, array, and record.  Strings are not allowed in the current
PCS-Linda  system.  Elements, in addition to having a specific type, can have 
a further description of actual  or formal.

Actuals

    When we speak of actual, we are concerned with an actual value.  This 
value can be either  the numerical representation or can be contained in a 
variable.  When using a number as an  element, we simply state the number 
in one of the element fields. 



                         ( 'example1', 1, 2 )

is an example of a tuple with name 'example1' and actuals 1 and 2, each of 
type integer.  If we  had two variables a and b of type integer,  

                           a, b : integer;

and we wanted to use the values contained in these variables, we would 
precede each of the  variable by the & symbol.  The tuple

                        ( 'example2', &a, &b )

would be an example of a tuple with name 'example2' and actuals a and b, 
of type integer.  If this  tuple was used in a program, the integer values 
assigned to the variables a and b would be  compiled into the tuple 
definition.

    In addition to integers, reals or floating point values can be used as 
actuals.  Thus we can  have

                  ( 'example3', 3.141592, 1.2e+08 )

can also be used as a tuple.  In most cases, the only thing that differentiates 
an integer from a real  number is the decimal point and therefore must be 
included when specifying a real number.

Formals

    Formal elements are more like variables.  They are used to collect a value 
from a tuple.   They are distinguishable by the lack of the & symbol.  A tuple 
with formal elements would  appear as

                       ( 'example4', a, b, c )

    The variables a, b, and c would be assigned to values returned after a 
match has taken  place on the tuple.  Formal variables can be any of the 
previous data types mention except strings.  

Tuple Space

    Now that we have tuples, we have to have a place to keep them.  This 



storage place is  called the tuple space.  The tuple space could be envisioned
as a large bag full of tuples.   
    The tuple space can be likened to shared memory in that all processors 
have access to the  tuples in the tuple space.  However, unlike shared 
memory, there are no critical sections in the  tuple space.  Any of the tuples 
can be used by any processor at any time.  Now there are ways to  control 
access to the tuple space by using tuples that emulate semaphores and the 
like.  In order  for a process to access a tuple, a matching has to take place.  
Thus a processor would sent a  template of the tuple it would like to match in
the tuple space.  The machine holding the tuple  space would perform a 
search on all of the tuple in the tuple space.  As soon as a match is found,  
the matching tuple is sent to the processor that requested the match.

    The tuple space in our system is located on a single machine called a 
master.  The master  is responsible for holding tuples and matching tuples.  
When tuples are put into the tuple space,  the master does not check for 
duplicate tuples.  Any number of
duplicate tuples can exist in the  tuple space.  There are specific rules that 
the master will follow when matching tuples. 

Tuple Matching

RULE 1 : Tuple names must match both length and character for character.

RULE 2 : Actuals match actuals if of the same type and contain the same 
value.

RULE 3 : Actuals match formals if they are of the same type and length.

RULE 4 : Formals never match formals.

    Let's look at each rule using some examples.  Assume we have the 
following tuples in our  tuple space.  

                      ( 'stuff', row, col, 1 );

                         ( 'coord', &x, &y );

                    ( 'work', &segments, &adder );

                         ( 'Junk', 1, 3, 5 );

 Row, col, x, y are integers;
 Adder is a procedure;



 Segments is a record of length 18;

    We have to match the tuple ( 'stuff', 100, 200, start ) with a tuple in our 
tuple space.  First  off, RULE 1 is satisfied with the first tuple in tuple space 
because they both have names of length  5 and match character for 
character ( stuff = stuff ).  The elements of the tuples are matched next.   
The tuple to be match has an actual element of type integer in the first 
position and value 100.   The first tuple in tuple space has a formal of type 
integer in the first position.  By RULE 3, the  first elements match in each of 
these tuples.  Further study shows that the second and third  elements 
match as well.

Further Examples

    The tuple ( 'stuff', 3.4, 200, start ) does not match the tuple ( 'stuff', row, 
col, 1 ) because  the types of the first element are different.

    The tuple ( 'stuff', &a, &b, &start ) may or may not match the tuple 
( 'stuff', row, col, 1 ).   A determination cannot be made because we do not 
have a value for the variable start.  If start  equals one, then we have a 
match but if start equals any other integer, the tuples do not match.

 
Note on real elements

    As we all know, computers have a tough time representing real or floating 
point numbers  well.  Some numbers can be represented exactly such as 0.5 
but how does a computer represent  the value of 2/3.  At some point, the 
computer will have to round to 0.666666667 which is not  correct.  This 
inaccuracy must be kept in mind when using real number as element types 
in tuples.   If during a calculation, a real number is used in a tuple, there may
not be a match because of  rounding.  Thus it is probably wise to avoid 
matching on reals if at all possible.  In most cases,  you will probably get a 
match but that one time when you don't,  keep the above in mind when  
looking for the problem.



                          Linda Instructions

    Now that we have tuples and a place to put them, we must look at the 
individual Linda  instructions and determine what each one of them does and
how to use them.  This section will be  ended with the common 'Hello World' 
problem coded in Linda and Pascal.  The first four Linda  instructions 
discussed are the most common ones used.  The last two are variants of two 
of the  common ones.

IN

    The IN instruction is used to request a match on a tuple from tuple space.  
The format of  the instruction is

                 IN ( name, e1, e2, e3, e4, e5, e6 )

    Only the elements necessary are included in the tuple.  The tuple specified
with the IN  instruction is sent to the master for a match with a tuple in tuple 
space.  If there is a positive  match, the master will return the matching 
tuple.  If there are any formal elements, they are  assigned the appropriate 
values from the matching tuple.  If there is not a tuple in tuple space that  
matches the tuple sent by the IN instruction, the master keeps the tuple and 
continually check the  tuple space for a match.  In the meantime, the 
processor that sent the IN instruction will block  execution until a matching 
tuple is sent.  Once that master has a match, it is sent.  When the  master 
sends the matching tuple to the requesting processor, it is permanently 
deleted from tuple  space.  If there are multiple copies of the same tuple in 
tuple space, the first one is taken.  The  master will take the first tuple that it 
determines matches the tuple sent with the
instruction.

RD

    The RD instruction is somewhat identical to the IN
instruction.  The format of the RD is 

                 RD ( name, e1, e2, e3, e4, e5, e6 )

    The RD instruction sends a tuple to the master for a match with a tuple in 
tuple space.  If  the master has a match, it sends a copy of the tuple found in
tuple space.  If the master does not  have a match, it will continually search 
tuple space for a match.  Meanwhile, the processor that  sent the RD 
instruction will block execution until a tuple is returned.  When the master 
finds a  tuple, it sends a copy of the tuple to the requesting processor.  The 



tuple is not deleted from tuple  space.  This allows a single tuple to be read 
from any processor without the overhead of INing the  tuple and OUTing the 
tuple just to get a copy of the tuple.  The RD instruction should be used  
when communicating common data to a number of different processors.

OUT

    We have seen how to request tuples from tuple space but how do we get 
tuples into tuple  space to begin with.  The OUT instruction enables us to put 
tuples into tuple space.  The format  of the OUT instruction is

                 out ( name, e1, e2, e3, e4, e5, e6 )

    The tuple with the OUT instruction is sent to the master and is put into 
tuple space.  Any  number of the same tuples can be put into tuple space.  In
all cases of actuals, the actual values  are sent to the master in the tuple.  
There are no pointers referencing data in a different processors  memory.  

    The master does not respond to the OUT instruction.  It is simply taken for 
granted the  tuple is put into tuple space.  Once an OUT has been performed,
any processor can access the  tuple including the processor that issued the 
OUT instruction in the first place.

EVAL

    The EVAL instruction is the most important of the Linda instruction.  
Without it, the  other instructions are of no use.  The EVAL instruction is used 
to put code into tuple space.  This  code is picked up by workers and 
executed.  The format of the EVAL instruction is 

                eval ( name, e1, e2, e3, e4, e5, e6 )

     In PCS-Linda, the eval instruction has not been fully developed to the 
specification of the  original Linda EVAL.  In PCS-Linda the format of the EVAL 
instruction is

                     eval ( 'work', &procedure );

    All EVAL instruction must name the tuple 'work'.  Because tuple with the 
same name can  reside in tuple space at the same time this is not a problem.
The first element of the tuple will be  an actual designated by the & operator 
and the name of the
procedure that is to be put into tuple  space.  So if we wanted a procedure 



called MANDEL to be put into tuple space to be executed,  the following 
instruction would be used

                      eval ( 'work', &mandel );
INP

    The INP instruction is identical to the IN instruction except for one 
condition.  If the  master finds a tuple match when the instruction is 
received, it will return the tuple.  If a tuple is  not found in tuple space, the 
master returns a null tuple to the requestor.  Thereby allowing the  INP 
instruction to be evaluated as either true or false depending on whether or 
not a tuple was  matched from tuple space.  PCS-Linda implementation 
information of this instruction will be  given later.

RDP

    The RDP instruction is identical to the RD instruction except the master 
does not  continually search for a match if its first attempt in unsuccessful.  If
a tuple is found, the  matching tuple is returned to the requestor.  If the 
master does not find a matching tuple in tuple  space, the master will return 
null.  Thus allowing the RDP instruction to be evaluated as either  true of 
false depending on whether or not a tuple is returned.

       Those are the six instructions that make up the Linda coordination 
language.  Let's look at an example of a 'Hello World' program using Linda 
and Pascal.

Hello World Example

    We will assume we are working on a system with 8 worker processors.  
The beginning of  our program would be standard Pascal.

                   program hello;

                   const
                     num_proc = 8;

Next we have to write the procedure for the workers.

                   procedure world;
                   var
                     count : integer;

                   begin



                     in ( 'count', count )
                     inc ( count );
                     out ( 'count', &count
                     out ( 'hello', &count );

                   end;

 Now the main procedure.
                   begin

                     out ( 'count', 0 );
                     for i := 1 to num_proc do
                       eval ( 'work', &world );

                     for i := 1 to num_proc do
                       begin
                         in ( 'hello', proc );
                         writeln ( 'Hello from processor', proc );                         end;
                     in ( 'count', 8 );

                   end;

    The program begins with the tuple called COUNT being put into tuple 
space with an  integer actual of 0.  This is followed by eight copies of the 
WORLD procedure; one for each  worker.  The main program goes into a loop 
requesting a HELLO tuple one at a time.  Not that  the first element is a 
formal, thus we are only matching on the name of the tuple HELLO.  The  
formal element will have some value on each loop iteration.  The numbers 
my not be in order.   As each tuple is found in tuple space, a message is 
printed that says Hello from processor -.  The  code ends with an IN which 
cleans up the tuple space.

    The workers are instructed to IN the COUNT tuple, increment the number it
finds in the  first element position and put the tuple back in tuple space for 
the next processor.  After it does  this, it puts a tuple in tuple space called 
HELLO with the number it put into the COUNT tuple.   Each worker will get a 
different number to report back to the main code.

    Now as we stated above, this code will receive eight tuple with the name 
HELLO is any  order.  If we changed the main programs loop slightly, we 
could guarantee to get the HELLO  tuple in order from 1 to 8.

                   for i := 1 to 8 do
                     begin



                       in ( 'hello', &i );
                       writeln ( 'Hello from process - ', i );                       end;

    We have changed the first element from a formal to an actual.  Thus 
instead of the master  having to match the name, it must match the first 
element as well.  Therefore, the it will return a  HELLO tuple only when the 
first element is a 1.



                         Parallel Lan System

    
    Now that we know how to program Linda and we have seen a parallel 
program, we need  to begin doing some real work.  So now we can sit down 
to our PC and begin programming the  examples.  

    Well not exactly.  Our common PC is a single processor machine.  We have 
no way of  dividing up work and allowing
different processors to work on the pieces.  We have two options.   We can 
purchase an expensive parallel machine for several
thousands of dollars.  Have it installed  and teach ourselves the things 
necessary to program the machine.  Or we can use the Parallel Lan  System.

    The Parallel Lan System is a software package that allows IBM PC or 
compatible  machines to operate as a parallel processor.  The machines must
be connected together by an  ethernet local area network.  A minimum 
system consists of three machines: a master, worker,  and a developer.

    Using Turbo Pascal and the Parallel Lan System ( PLS ), a parallel program 
can be  constructed for any parallel algorithm we so desire.  In addition, we 
have a  version of Linda  called PCS-Linda that we will use to coordinate the 
activities of the
different processes created  our the parallel program.  

    The PLS was created to co-exist with other network products on the 
market such as  Novell Netware and DECNet.  The system will not interfere 
with NCSA or PCSA or any of the  TCP/IP programs.  The Parallel Lan System 
can even be configured to run several parallel  programs on the same 
network sharing the same processor of the system.  

Configuration

    The configuration of the Parallel Lan System is very important to the 
efficiency of the  parallel system.  The remaining sections will document the 
different components of the PLS.   Several examples will be presented in the 
end of the guide.

Requirements

    The Parallel Lan System operates by using an ethernet local area network 
( LAN ).  LANs  are very popular among educational instructions and 
businesses.  Various packages are available  to run on networks including 



Novell Netware and MS Lan Manager.

    The Parallel Lan System communicates on an ethernet by way of a packet 
driver.  Most  ethernet card manufacturers have these drivers available at no 
cost.  In addition, there are public  domain packet drivers available for most 
cards.  

Packet Drivers

    Packet drivers are terminate and stay-resident ( TSR ) programs which act 
as an interface  between a developer and an ethernet card.  Ethernet cards 
use a hardware interrupt of a PC.   When this interrupt is activated, the 
packet driver code is activated to perform some function.   Likewise, the 
Parallel Lan System software is able to activate a software interrupt which 
also  activates the packet driver code for its own use.  Software can be 
written that locates the packet  driver installed in a machine thus allowing an
PC and ethernet card to be used without changing  the system software.

    Manufactures who provide packet drivers will also include information on 
how to install  them.  Packet drivers can be used with most network 
packages.  An advantage of using packet  driver is multiple applications can 
access the same ethernet card.  The packet driver has the  ability to give a 
packet from the LAN to one application or another based on a type field 
located  in the packet.

    What we want to do now is install the packet drivers for the machines the 
system will run  on.  Follow the instructions given by the manufacturer. With 
that, we want to verify that  everything to this point is operating correctly.  
On the disk labeled system software is a file called  PKTINFO.EXE.  When 
executed, this program will give us information about the ethernet card  and 
packet driver installed on a particular machine.  After the packet driver has 
been installed in a  machine, place the system disk in driver A: and type

                              A:PKTINFO

If a page of information appears on the screen, the packet driver is working 
correctly.  If a  message appears saying no packet driver was found then the 
packet driver was not installed 
correctly.

    After the packet drivers have been verified we want to check the LAN 
itself.  Located on  the same disk is a program called TRANS.EXE.  This is a 
simple LAN communication program  that will send and receive packets from 
on PC to another.  Pick two machines to execute this  software on.  One one 
of them, write down the ethernet address as shown by PKTINFO.  Inset the  



system disk in drive A: and type

                               A:TRANS
    Take the disk out and do the same for the other machine.  On the PC that 
will receive the  packets press SHIFT and R.  We now want to select what 
receive mode to use.  Press 2.  The  screen will blank and a status bar will 
appear at the top.  On the sender machine press SHIFT and  S.  We need to 
select a receive mode as we did for the receive machine.  The reason is 
because  the receiving machine will send an acknowledgement packet back 
to the sender.  So press 2.  We  are now asked if we want to use the 
broadcast feature.  Press N.  The program is asked for the  address of the 
receive machine. Enter the six bytes written down separated by spaces and 
press  return.  Enter a message to be sent to the receiving machine and 
press enter.

    The screen will blank and ask you to press a key to send a packet or shift 
Q to quit.  Press  any key.  If you look at the receiving machine, you message 
should be on the screen.  On each of  the screens, there should be a 1 in the 
upper right hand corner.  This indicates that one packet has  been sent and 
one packet has been received.  You can continue to press any key to send
additional  packets.  Press SHIFT and Q when ready to quit.  



                                Master

    

    The master of the Parallel Lan System is the most important machine.  It 
can be likened to  the server of a local area network.  It must be powerful 
and able to handle a flood of activity by  the worker nodes and the 
developer.  As documented in the manual Using the Parallel Lan  System, the
master should consists of

    * At least a 25-MHZ 386 IBM PC or Compatible.

    * 4 MB of RAM

    * 16-bit 32k buffer Ethernet card

    Anything above these specification will allow for better efficiency in the 
system.  Other  than running the system software for the master, there is 
nothing that can be done to the master. 

Duties

    The duties of the master are as follows

    *  Administer the MAIN tuple space of the PLS.

    *  Receive and interpret Linda instructions from multiple processors.

    *  Keep track of unanswered Linda instructions (IN,RD).

    Those are the only responsibilities of the master.  However it is a larger 
responsibility  than it may appear.

Multiple Processor Communication

    When considering the concept of multiple processor
communication, image this situation.   You are sitting in the middle of a ring 
of sixteen people.  All of these people are trying to hold a  conversation with 
you AT THE SAME TIME.  The human mind simply cannot handle that much  
information at the same time.  Most people can't even keep track of a single 
conversation.  That is  one of the jobs of the master.  

    Things begin with the ethernet card receiving a packet.  This packet is put 
into some  memory set aside for incoming packets.  The master system 



software periodically checks to see if  there are any packets in the first 
incoming buffer.  If there are packets, it will take as many as  there are and 
partial processes them and put them into a secondary buffer.  This step is 
crucial.   The first buffer is static.  In other words, it is of a constant size.  As 
much information about this  buffer as possible was defined when the master
program began executing.  If it were to overflow,  some packets would be 
lost ( the sender would send duplicates however.  But at a lose of  execution 
time ).  After the packets are in the secondary buffer, the system software 
will  processed them fully one at a time as it has time.  Processed packets 
will end up in one of two  places.  Packets which represent the Linda 
instructions OUT and EVAL windup in the TUPLE  SPACE.  Packets 
representing IN, INP, RD, and RDP will end up in a request queue.  The 
master  system software picks from the request queue when it tries to match
tuples.

    In addition to the above queues, the master also has internal data 
structures that it uses to  guarantee that no duplicates packets are 
processed.  We all know what its like to be told the same  thing over and 
over.  The master doesn't like it either therefore it eliminates duplicates.  
Also, the  master must keep track of the order of packets from different 
processors.  Just like we try to say a  persons first name before their last 
name, the master must guarantee that a packet sent before  another packet 
arrives first.

    For more information on the about technical data about the system 
software, refer to the  document The Parallel Lan System -A Look Inside.

Different Masters

    There is a difference in performance between different masters.  We are 
going to take a  look at how masters can influence the overall speed of a 
parallel program.  The masters used are

         *  a 4.77-MHZ 8086 IBM PC Compatible, and

         *  a 25-MHZ 80386 IBM PC Compatible.

    Each of masters was used in a comprehensive set of 40 tests using the 
Linda mandelbrot  program explain in a later chapter.  The test documented 
here was performed using from 1 to 16  workers ( 4.77 MHZ 8086 PC's using 
8087 math coprocessors ) each doing 4 columns per  computation.  The 
following table shows the difference between the masters.

Cpus    8086 Master     80386 Master    Speedup
1       642.52          577.91          11%



2       358.89          274.89          24%
4       210.80          141.65          33%
8       188.72          80.36           58%
16      ----.--         88.87           -----
                                       
    The chart shows the total seconds for each test using the 8086 master and
the 80836  master.  The far right column shows the speedup between the 
two systems.  There is a  considerable speedup as we approach 8 workers.  
There was no test performed for 16 workers  using the 8086 master.  

    Notice the increase in time between 8 and 16 workers.  This example also 
illustrates the  idea that adding more workers does not necessarily decrease 
execution time of a program.  A  faster master does indeed make a 
considerable impact on the speed of the execution of the  program.

    
Machine

    The faster the machine, the faster the tuple space can be searched for 
needed tuples.  The  most work the master will perform is interpreting tuples 
sent to it.  The faster it can do this the  better.

DOS

    Microsoft recently released DOS 5.0.  This DOS has many memory saving 
features that  the system can benefit from.  IF the master is equipped with 1 
MB of memory or more, DOS can  be loaded into high memory as well as 
device drivers and TSR's.  All of this can save precious  lower memory.

    The master software uses lower memory ( as well as extended ) to hold 
the tuple space.  A  system using DOS 3.3 or 4.01 will have approximately 
300k of heap space available for the tuple  space.  Dos 5.0 increases this 
amount to approximately 360k.

Extended Memory

    If we have 1 MB available we can take advantage of the features of DOS 
5.0  Any  memory over 1 MB can be configured as extended memory by 
using an extended memory  manager.  The master software will take 
advantage of any extended memory available.

    Using extended memory for some of the tuple space is expensive as far as
processing  speed is considered.  The software uses a system put into public 
domain to manage extended  memory.  Unlike conventional memory below 



640k, extended memory cannot be accessed  directly.  A system of segments
is created in extended memory.  These segments are copied into  
conventional memory to be
manipulated and then put back.  The segments are 32k in size.  This  means 
there is a 64k memory copy performed for each and every packet that must 
be put into  extended memory.  Now simple memory management has been 
put into place which will keep the  most recently used extended memory 
extent in conventional memory.  However, to execute  programs which has a 
large amount of data, extended memory is essential.  At Parallel Computer  
Solutions, a 4 MB system has been used in all cases with no problem as far 
as space  requirements.

Network Cards

    Not all cards are created equal.  We have 8-bit, 16-bit, and 32-bit cards 
available for PCs.   To the best of my knowledge, 32-bit cards are available 
for EISA bus system only.  Therefore,  most PC's will use either the 8 or 16 bit
cards.  If we have a 80286 or better machine, we will  want to use 16-bit 
cards.  16-bits ethernet cards have several advantages.  

    The first is the addition of 8 data lines.  More information can be 
transferred on 16 lines  than 8 lines.  A second reason is buffer size.  Most 8-
bit ethernet cards have an 8k buffer for  incoming packets.  For most 
applications this is fine but the master will be receiving packets from  many 
different PCs at the same time.  We want to have a large buffer available if 
the master is  busy searching tuple space or some other system function.  
16-bit ethernet cards have either 32k  or 64k buffers for incoming packets.

    You usually get what you pay for when buying a computer system.  The 
master is the  most important component in the Parallel Lan System and 
therefore it should be the best system  available.

Master Installation

    Obtain a blank diskette to copy the master software from the system 
diskette.  To make  the system easy to install, create a bootable diskette with
the appropriate memory managers, etc  for you system.  Copy the packet 
driver for the ethernet card onto the new diskette.  Copy the file  
MASTER.EXE to the net diskette.  Label this disk as bootable and containing 
the master system  software.

    Execute the master software on the appropriate machine by typing 



                               A:MASTER

    A message will appear telling how much extended memory is available 
and used by the  master system.  Press return to get to the next screen.  The
following should appear

( master screen - initial picture )

    This is the initial screen for the master.  The master sits in a loop waiting 
for a tuple to be  sent to it.  Under normal circumstances, the master does 
not need any attention.  The operation of  the master can be disabled by 
pressing any key.  As activity starts on the system, the screen will  change, 
this screen

( master screen - 2 cpu picture )

  shows that 2 cpus are active on the system and the packets sent and 
received from those cpus.  In addition, the sizes of the heap and extended 
memory is given.



                                Worker
    

    The workers are an important part of the Parallel Lan System.  The workers
do one thing:  perform calculations.  The least powerful machine available for
a worker is:

         * 4.77 Mhz 8088 IBM PC or Compatible

         * DOS 3.3

         * 640K RAM

         * 8-bit ethernet card

    Just as in the case of the master, the performance of the Parallel Lan 
System can be  determined by the power of the worker machines.  Testing of 
the Parallel Lan System was  performed on both 4.77 Mhz 8088  workers and 
20 Mhz 80386 workers.  Both systems provided  speedup simply because of 
the parallel execution of the test program.  But the 80386 workers  gave 
additional speed advantages by as much as 60/80%.  The following four 
charts show the  times required to perform mandelbrot using 8088 workers 
and 80386 workers.  The master in the  first two charts was an 8088 
machine.  In the second two charts, the master was an 80386  machine.

( charts )

    In an established LAN we do not have much choice in what type machine 
is used as a  worker.  The charts should show you that processor power 
certainly makes a difference in both  the master and workers.

Worker Installation

    We must now install software on each of the worker machine.  Follow the 
previous  directions for setting up a master diskette but instead of copying 
master.exe we need to copy a  worker program.  

    Turbo Pascal is available in two different versions: 5.5 and 6.0.  They are 
different in code  generation.   Therefore, we have two different worker 
pieces of software called worker5.exe and  worker6.exe.  If you are using 
Turbo Pascal 5.5 then copy
worker5.exe to a:worker.exe and if  you are using Turbo Pascal 6.0 then copy 
worker6.exe to a:worker.exe.



    Insert the diskette into driver A: and type

                               A:worker

    The screen will blank and you will be asked the address of the master.  If 
you did not  write the address of the master down, you can look on the 
screen of the machine it is executing  on.  In the upper left hand corner of 
the screen is the ethernet address of this machine.  On each of  the worker 
systems, enter the six bytes separated by spaces.  Once the system has 
digested the  master address, it will attempt to establish communications 
with the master.

    Recall that the purpose of the worker is to execute code given to it by the 
developer  system.  The worker will get work from the master by sending a 
tuple of the form

                            in ( 'work' );

to the master.  All packets sent over the ethernet are given a specific number
in order to keep a  sequence.  the system software gives the number 2 to the
first packet sent out by any system.  We  can verify that a worker is 
communicating with the master by the messages put on the master and  
worker screens.  A worker has communicated successfully if on the screen of 
the master is a  message IN - 2 for each of the workers.

    Since a packet has been sent to the master, the master has to 
acknowledge the packet,  therefore each of the workers should have a 
message in the right most box with the number 2 next  to it.  If this is the 
case, then this worker has been successful added to the system.  If this is not
the case, then either the master's address was not correctly entered or the 
address in not that of the  master.  The worker software halts when a key is 
pressed.  So if no message appears on the screen  , press a key on the 
worker machine and try again by executing the worker software again.



                              Developer

    
    The developer is a machine on the system which runs and coordinates the 
executing  parallel program.  It will begin a program by submitting any 
number of worker processes.  The  responsibilities of the developer are
    
    *  Submit jobs for worker processors

    *  Coordinate the submitted jobs

    *  Produce results

    The developer is the foreman for the Parallel Lan System.  A programmer 
will code a  parallel program on the developer, compile it, and run it without 
moving to different machines.   One way to look at it is you are programming
a single PC which just happens to have any number  of subprocessors 
available to help speed up a particular program.  

    Again it needs to be pointer out that if you are using Turbo Pascal 5.5, the 
workers should  be executing worker5.exe and if you are using Turbo Pascal 
6.0, the workers should be executing  worker6.exe.

    The Parallel Lan System developer software is setup to initially recognize 
files with an  extension of .PLS.  Turbo Pascal and our system files can be set 
up in such a way as to simplify  use of the system.  In the root directory of 
you hard drive create a directory called PLS using the  command

                              mkdir pls

    Move into that directory with

                                cd pls

    Insert the system software diskette into drive A: and copy the following 
files into our new  directory

                        work*.tpu

                        both*.tpu

                        *.pls

                        linda.exe



                        *.doc

    Now back out of this directory with 

                                cd ..

    Using an editor change your autoexec.bat file to include the turbo 
directory in the system  path.  If no PATH directive appears in you 
autoexec.bat file, enter the following line

     path c:\tp - or whatever the turbo pascal directory name is

    After you have changed the file type

                               autoexec

    This is make the change effective.  Now change into your PLS directory 
and type

                           turbo linear.pls

Turbo's main screen will appear.  We need to make sure the compiler settings
are set correctly  before we do anything else.  Press ALT and O, move to the 
COMPILER and press return.  Move  the bar to FORCE FAR CALLS and change 
the entry to YES.  Check that the entry BOOLEAN  EXPRESSIONS is set to 
SHORT-CIRCUIT.  Move to the first menu and select the SAVE  OPTIONS entry 
and press return.  Save the new options.

    Now on the screen will be the parallel program for solving linear 
equations.  Try to  compile this program by pressing F9.  You should get an 
error on the first Linda command IN.   What we need to do is execute the 
conversion program LINDA.EXE.  Linda.exe is explained in  the document, 
Linda Conversion Program User Guide.  To do this in a convenient manner, 
press  ALT and F.  Move to the entry EXIT TO DOS and press return.  This will 
exit us to DOS but  keep Turbo Pascal in memory.  Run the conversion 
program by typing 

                             linda linear

    The linda program will create a file called Linear.pas that is made up of 
Turbo Pascal  statements only.  Type exit and press return.  This will return us 
back to Turbo Pascal.  We are  still working on the file Linear.PLS.  Press ALT 
and F and move the bar to PICK and press  return.  Pick a new file and enter 
linear.pas.  This will bring up the file linear.pas.  Press F9 to  compile the 
program, it will compile successfully.  If there had been an error, we would 
have  wanted to press ALT and F, move the bar to PICK and select linear.pls 



to make any changes, run  linda again, and select linear.pas.  Although this 
may seem a hassle, it is the only way to  incorporate a preprocessor in the 
Turbo environment.  Future releases will not require this.

Compiler Directives

    During the development of the system, several things were learned about 
how Turbo Pascal ( TP )   generates code.  TP allows for several different 
types of float point variable.  Reals, double, extended and  several other are 
the chooses that we have.

    In most applications, real variables are good enough for our calculations.  
TP will generate code  for reals automatically.  In order to generate code to 
handle double or extended variables, the compiler  directives {$N+,E+,F+} 
are necessary.

    So what the problem.  The problem comes about when there are constants
in your code.  Such as

                              a := 1.0;

The 1.0 is a constant as far as TP is concerned.  When TP generates code for 
normal reals, it appears that  the constant value is stored in the code itself.  
When double or extended reals are used, TP does not put the  constant into 
the code itself.  The constant value is stored at the top of the procedure that 
the constant  appears in.  The code

              procedure test;
              var a : extended;
              begin
                a := 1.0;
              end;

    TP generates the code.

         0000803F       -         1.0
         55             -         push bp
         89E5           -         mov bp,sp
         B80A00         -         mov ax, 000A
         9A7C02AF5C          -         call 5CAF:027C
         83EC0A         -         sub sp,000A
         CD3C99060000   -         fld cs:dword ptr[0000]

    The mnemonic FLD loads the real constant into the 80x87 or emulator.  



The constant is located at  cs:dword ptr[0000] which when disassembled, is 
the first line of this code segment.  The main code has a  call statement CALL
0004 which calls this
procedure code thus bypassing the real value.

    Now what is means to us is, we should always include the compiler 
directive {$N+,E+,F+} in our  program.  It is not always needed obviously, 
but it is safe to include it.  If you write an application that  uses reals, there 
may be an error.

    The system code has been tested on machines with and without numerical
coprocessors.  One test  included some workers with coprocessors and some 
without.  The above compiler directive worked for  both setups.

Units and System Code

    There are a considerable number of routines that are needed to perform 
the operations of the  Parallel Lan System. By
incorporating these routines into a single Turbo Pascal Unit, we are able to  
successfully hide them from the developer.

    Turbo Pascal requires units to be included in a program by using the 
command USES.  Programs  intended to execute on the PLS should start with 
the code:

                   Program ..........

                   {$N+,E+,F+}

                   Uses work, both;

    There are two units for the PLS; work and both and should be in the 
directory where the program  being written is.  By USEing this unit, we have 
access to procedures and variables that we will use directly  in the writing of 
our parallel programs.  Now in the working directory, there are two different 
version of  the work and both units.  Work5 and both5 should be used when 
using Turbo Pascal version 5.x and  work6 and both6 should be used when 
using Turbo Pascal 6.0.

Startup Procedure

    We have developed a parallel environment which operates in coordination 
with Turbo Pascal.   Because of this, there are several problems that must be 
dealt with directly.  To solve several problems, a  parallel program must 



include, what we call, a startup procedure.  The purpose of this procedure is 
two-fold.  First is to initialize the system.  The second procedure of the 
startup procedure is to border  procedure which are destined to be sent to 
worker processes.

    Turbo Pascal creates, as far as I can tell, procedures by first coding all real 
constants and placing  them into the code.  So if a statement in the language
like

              a := 1.0;

Turbo Pascal will encode the 1.0 into the code such as

              0000 3F55 ( or something like this )

    After the constants, code is generated to set up the stack for any formal or
local variables.

              push bp
              mov  bp,sp
              mov  ax, ----  ( the number of bytes required for variables )              
call ----

    There one or two calls to Turbo Pascal procedures.  It is my guess that the 
stack is checked for  overflow as well as other housekeeping activities 
associated with the stack.  The code to perform the  function so the 
procedure are generated next.  After this code, the stack is returned to its 
original state.   The last code generated is a return instruction.  The 80x86 
family of microprocessors have several  different return opcodes. These 
return opcodes are for near, far, and interrupt routines.    Our system  
requires all procedure and function calls to be generated as far.  The reason 
for this is so Turbo Pascal will  always generate a RETF instruction which  us 
$CB hex. By always generating this particular instruction,  the system 
software can make a fairly good guess at where a procedure ends and 
another begins. This, if  we wanted to generate code for the procedures.

              procedure startup

              begin
              end;

              procedure tosend;

              begin
              end;



    The code generated would look something like

              ( procedure startup )

              $55  push bp
                   mov  sp,bp
                   mov  ax,----
                   call

                   .
                   .
                   .

              $CB  retf

              ( procedure tosend )
              $55  push bp
                   mov  sp,bp
                   mov  ax,----
                   call

                   .
                   .
                   .

              $CB  retf

    If our code was going to send the procedure tosend to a worker node, we 
would grab the starting  location of the procedure, say 0030 hex, by using 
the @ operator of Turbo Pascal.  The system code  backtracks until it finds a 
$CB value.  What we are doing is looking for any real constants.  The 
memory  from the start of a procedure back to the next procedure's end $CB 
is copied to the end of the code we are  sending to the workers.

    Now why the startup procedure.  If we did not have a procedure coded 
before the procedure we are  sending to the nodes, the system could search 
for a long time before another $CB is encountered.  By  incorporating the 
startup procedure, we are guarantee to find a $CB.  The turbo debugger 
invaluable when  trying to determine exactly what Turbo Pascal does during 
code generation.

    The startup procedure should be included in the developer code right after
the compiler directives.

              Program ...............



              {$N+,E+,F+}

              Procedure startup;

              begin

              end;

    Now that we have the basics of the startup procedure, we need to put 
some code into it.  The first  two lines of the procedure are

              exitsave := exitproc;
              exitproc := @myexit;

These lines of code link our exit procedure into the system exit procedure 
which is part of any Turbo  Pascal program.  In the event of a run-time error, 
our exit routine will do some internal memory  deallocation and other system
functions that allow the system to fail gracefully.
    The next size lines of code identify which machine is the master.  Ethernet 
addresses are codes as  six bytes which as 00 00 C0 05 86 24 hex.  Find out 
the address of the ethernet card the master system  software will execute on
using the pktinfo program included with the system.  The lines of code 
necessary  to identify the master to the developer program looks like

              master[x] := $yy;

There should be six lines identical to the above with x ranging from 1 to 6.  
The $ operator identifies the  following two
characters are hexidecimal.

    The last line of code in the startup procedure is

              init_system;

The system initialization code has been put into this single call in order to 
keep the startup procedure as  simple as possible.

Procedure Declarations

    The power of the Parallel Lan System lies in the ability to send procedures 
to worker nodes.  The  system is not limited to just sending of a single 
procedure.  Any number of procedures can be sent to  workers.  There are 
several rules that have to be followed when designing procedure which will 



be sent to  workers.

Global Variables

    When Turbo Pascal compiles a program, space is set aside in a separate 
data segment in the PC's  memory for variables.  The memory location of a 
specific variable is recorded in the compiled code.  If a  global variable is 
reference in a procedure sent to a worker, the value obtained when this 
variable is used  will not be the value that we want.  The contents of the 
memory location referenced will be undetermined  because the worker was 
not aware that of that particular global variable.

    Worse yet is the assignment of a global variable.  The value assigned to 
the variable will be placed  in the workers memory somewhere.  It is possible
that the assignment will cause the worker to fail.

    Global variables should be passed by the developer to worker machine 
through the Linda  instructions and the tuple space.

Readln/Writeln

    Procedures sent to workers cannot have readln or writeln statements in 
them.  The reason for this is  Turbo Pascal treats the screen and keyboard as 
files.  If used, a FILE NOT OPENED error will appear and  the worker will fail.

Formal Parameters
    
    There can not be formal parameters in the procedures sent to workers.  
Because we are using a  version of the Linda coordination language, there is 
no need for formal parameters.  The function of  formal parameters are 
performed by Linda instructions.

Nesting Procedures

    Turbo Pascal does not follow the source code exactly when generating 
code.  One such case is  nesting procedures. Logic would dictate that the 
code generated would model that of the source, where by  the procedure 
code generated by the compiler would include procedure nesting.  Turbo 
Pascal does not do  this, nor should it.  Nested procedures are coded as 
single procedures and a call in made to them as needed.   This however 
causes us some problems.  When our system generates tuples to send to 



workers, it is  performed at runtime, therefore we do not have access to the 
symbol table.  We cannot determine which  procedure to send and which not 
to.  The end result is we are unable to handle nested procedures with this  
release of the system.

Multiple Procedures

    There are programs which are prone to decomposition requiring multiple 
procedures.  The system  is setup such that procedure sent to workers can 
coexist with normal procedures.  The developer can use  normal procedures 
during the execution of a program.  When a program has more than just a 
single  procedure to be sent to the worker nodes, order is not important.  The
system will locate the appropriate  procedure when asked for.  

    Say we have a program which requires two different procedure to be sent 
to workers.  Can the  developer program or programmer determine which 
worker will get which procedure?  No, we can not  determine in what order 
the workers will get the procedures.  If it is important, a system of 
semaphores could be used.

CAUTION!

 There is one important note that must be made about the code that 
can appear in a worker procedure.  Turbo Pascal performs smart linking when
ever a program is compiled.  In other words, if you use the sqrt library 
function, it is extracted from the system unit and placed in your code.  The 
entire system unit is not compiled with your code.  Therefore, STATEMENTS 
FROM THE SYSTEM UNIT CANNOT BE USED IN YOUR WORKER PROCEDURES! 
The reason for this is the worker software cannot effectively be compiled 
with all of the functions included in the system unit.  Once again, this is a 
limitation brought about from building this system on top of the conventions 
of a pre-existing compiler.

Developer Program Design

    Parallel programming is no easy nor is it straightforward.  In this section, I 
would like to give a  few points on understanding the task at hand.  This is by
no means a tutorial on parallel programming.

    All parallel system are different.  Then again so are all programming 
languages.  Bit as computer  scientists, we are required to be able to learn 
new programming languages easily.  Learning to program the  Parallel Lan 
System can be an



uncomplicated task if the problem we want to solve is correctly  
decomposed.

    The Parallel Lan System is designed as a distributed structure machine.  
The information or data  structures we develop for our problem are kept on a 
single machine, the master.  In order to access this  information, a request is 
sent to the master by way of a tuple.  There can be potentially a large 
amount of  information   passed among the different systems.  The designer 
of a parallel program on the PLS must  keep this i mind.  Take for instance on 
the of the example programs described in the main documentation.   
Mandelbrot is typically designed as a sequential program which executes on 
a single pixel at a time.   When writing Mandelbrot for a parallel machine, 
several options are available.  Do we want each  processor to execute the 
algorithm on a single pixel before returning result, a column, a row , or 
multiple  of each.  The main documentation describe the result .  But suffice 
it to say, executing on a single pixel at  a time will achieve parallelism 
because some number of processors will be calculating a pixel value at any  
given moment.  Bit is not optimal.  There is too much communication 
between processors.  We can  achieve better results with a particular number
of processors by increasing to a column or more.

    This brings up another point, there are times when adding processors to 
the system will result in a  degradation of the system as a whole. 

Tuning

    There will almost always be some parameters in a parallel program that 
will judge the ultimate  speed of the program on the system.  It must be kept
in mind that the key to parallel
programming is to get  an initial program up and running.  After the program 
is running, test it and compare to other platforms.

              A sequence program executing on a single processor

              A one - worker Parallel Lan System

              A two - worker Parallel Lan System

              A four - worker Parallel Lan System

              An eight - worker Parallel Lan System

    Graph the results ( using execution time ) on a chart.  This will help 
illustrate the speed up  achieved from going to parallel execution.  Do not be 
surprised if several of the tests are slower than a  sequential program.  At 



some point, adding more processor should achieve results faster than the  
sequential program.  A rule of thumb can be used in general.  If after 
executing the algorithm on a four  processor system the results are not 
achieved faster than a sequential program, something is wrong with  the 
design of the program.  But before submitting to a redesign, check the 
establish or try to establish  tunable parameters.  There are always some 
variables or aspects of the algorithm used in the program  which can be 
tuned to achieve faster results.

    The pixels was a tunable parameter in the Mandelbrot program.  In a 
fiance program it could be the  number of variables used in a regression or 
the number of data points examined.  In the linear algebra  program shown 
in the main documentation, its the number of columns calculated by each 
processor.

Debugging

    A parallel program can sometimes be more of a challenge than writing the
parallel program itself.   As of this release there are no debugging facilities, 
but the source code is provided so you can add any  support you feel 
necessary. My only remark on this subject is to run your program on a one 
worker system  and count out pieces of the code until you have identified 
where the problem occurs.  Then run on a two  worker system and do the 
same thing.  Just remember the you have many different tasks executing at 
the  same time.  A key to debugging a parallel program is to understand the 
relationship between these  different tasks.

Main 

    In the main section of the developer program, the first statement should 
be a call to start_up.   Your code for the actual program goes next.  After the 
code, the statement close_system ends the main  section.

                   begin

                     start_up;

                   { user code }

                     close_system;

                   end.
Skeleton Code



    The following is a skeleton of the necessary code for a developer program.
It should reproduced  and placed in a .PLS file for easy access.  The easiest 
way for keeping the code separate is to name this  code skel.pls and perform
a copy when developing a new application.

program ------;

{$N+,E+,F+}

uses both, work;  { remember: append 5 or 6 to the end of work and both 
depending on the version of tp }

procedure start_up;

begin

 exitsave := exitproc;
 exitproc := @myexit;

 master[1] := $--;
 master[2] := $--;
 master[3] := $--;
 master[4] := $--;
 master[5] := $--;
 master[6] := $--;

 init_system;

end;

{ user procedures }

begin

 start_up;

{ user code }

 close_system;

end.

What the Developer Doesn't Show

 The developer is an independent program.  You will not see the same 



displays as the master and  worker have.  Therefore, there should be some 
activity on the developers screen.  The  programmer will have to provide this
activity.  The example programs are all graphical in nature  therefore it is 
quite easy to see that everything is going normally.  The programmer will 
want  some kind of indication from the developer as to the state of the 
system as far as the developer is  concerned.

RELAX!

    The most important thing to remember when developing parallel programs
is to relax.   Parallel programming takes time and patience.  Parallel 
programs have to be planned, in my  opinion, much more than sequential 
programs.  The results for this is that in a sequential  program, one 
instruction is going to follow another.  Even in the case of decisions and 
loops.   There is no question about it.  It can be traced and reproduced many 
times.  ( Unless there is a  subtle bug in the program that occurs only every 
three thousand iterations ).  In a parallel  program, there is absolutely no 
guarantee as to the order that instructions will be executed by the  different 
machine.  Even if the workers are executing the same piece of code.  

    I strongly recommend coding the programs presented later and running 
them.  Get  comfortable with the system and then
experiment.  You can always reset the machines and start  the system again 
if something really messes up.  



                              PCS-Linda

    In the above section on LINDA, we touched on the different instructions 
and either use in  coordinating parallel programs.  Now we want to look at 
PCS-Linda.  PCS-Linda is the dialetic  of Linda that the Parallel Lan System is 
programmed with; along with Turbo Pascal.  In order to  get Linda is execute 
using a pre-existing compiler, several requirements had to be made as far as 
using Linda was concerned.  This section will discuss those requirements.

Linda Conversion Program

    Turbo Pascal will not recognize PCS-Linda.  Try it once.  You will get an error
message  on any of the six instructions.  The Linda Conversion Program ( LCP
) is a preprocessor for the  PLS and PCS-Linda.  After you have coded a 
parallel program using Turbo Pascal and PCSL,  you must give the program a 
name ending with the extension '.PLS'.  Once this file is created,  you can run
the LCP to convert your program.  LCP will perform some magic and produce 
a file  with the same name ending with '.PAS'.  This file can now be 
successfully compiled with Turbo  Pascal.

    The LCP will produce code that Turbo Pascal can recognize for each of the 
linda  commands.  If there is an error in the Turbo Pascal code, verify that all 
variable have been  declared and things like this.  Always remember to make
changes to the '.PLS' file and not the  '.PAS' file.  For more information about 
LCP, refer to the document Linda Conversion  Program.

 
Tuple Elements

    Tuples in PCS-Linda can consist of zero to six elements.  The elements can 
be one of four  different types

    *  Actuals

    *  Formals

    *  Data

    *  Null

    Actuals and formal elements will be discussed next.  The last two types, 
the programmer  and user have no control over.  When an EVAL instruction is
executed, a procedure is sent to the  master or worker.  This procedure is 



considered to be a data element.  In reality it is an actual but  there are 
special needs that must be met when searching and transferring procedure 
to and from  the different machines.  The data type allows for cleaner code.   
The null type is used in every tuple where there is less than six elements.  
Elements not  used in a tuple are given the type null.  The null type uses no 
memory therefore it is a convenient  form of termination for these empty 
elements.

Actuals - Integer/Real

    Using a pre-existing compiler caused several different things to happen in 
the  development of the Parallel Lan System and its associated Linda 
language.  This can be seen  when using actuals and formals in the tuples.  

Integers

    Turbo Pascal has several different types of integers; integer, long, word, 
byte.  Each of  these can be used in a tuple but there is a rule to their use.  If 
an integer is to be sent in a tuple, it  can be represented in two ways.  The 
first is to put the integer into the tuple

                          ('info', 1, 5, 8)

    The 1, 5 and 8 will be interpreted as integer and stored accordingly.  The 
integer used in  the two-complement two-byte integer.  Therefore the tuple

                          ('info', 1234567)

would case a compile error when the final code was compiled.  This number 
is too large for an  integer stored in two bytes.  The same is true if an single 
byte was to be sent.  It would be stored  in two-bytes instead of one.  In 
order to sent the above number, we could use the tuple

         
         bigint : long;
         
         bigint := 1234567;

         ( 'info', &bigint );

    This tuple would effectively send the large number to the master.  We 
would do the same  for a byte

         smallint : byte;



         smallint := $32;

         ( 'info', &smallint );

    Remember that the tuple sent to match either of the above tuples would 
also have to have  the receiving integer declared as either a long or a byte.

REALS

    The same situation as above occurs with reals as well.  When a real is put 
into a tuple

                      ( 'info', 1.234, 1.4E+3 )

    The real is evaluated as a 6-byte real number.  This is an acceptable real 
number for most  applications but in the case of more complex mathematics,
a large real may be necessary.  Turbo  Pascal support reals as either real, 
single, double, extended, and comp.  Each of these tpus can be  used just as 
we did for integers.  To send the real number 1.234e+1023 we would use the
tuple

         bigreal : extended;

         bigreal := 1.234e+1023;

         ( 'info', &bigreal );

    Again, the variable to receive this real number would have to declared as 
an extended as  well.

Formals 

    Formals must match the types they are to receive.  Because we are 
programming both the  code the worker will receive and the code the 
developer will execute, we can easily match the  types.  However, it may 
happen that in a case where we were using reals and the accuracy was  not 
enough so we change to extended reals, we missed a declaration.  The 
system will not match  the tuple because a standard real is 6 bytes and an 
extended is 10 bytes in length. 

INP & RDP



    The pre-existing compiler strikes again.  The INP and RDP instruction 
treated as function  normally.  They will returned either true or false if a tuple
was matched by the master.  However,  we were unable to get the 
functionality of these two instructions exactly.  In PCS-Linda the RDp  and INP
instructions must be assigned to a boolean variable such as

                    ok := RDP ( 'info', bigreal );

    If a tuple was matched, bigreal will contain the real value sent with the 
tuple and ok will  be set to true.  If a null tuple was sent by the master, ok 
will be set to false, and bigreal will not be  changed.  If we were to use the 
RDP ( INP can be
substituted wherever RDP is used ) to control a  loop we would do the 
following

         ok := rdp ( 'info', bigreal );
         counter := 1;
         while not ok do
           begin
             inc ( counter );
             ok := rdp ( 'info', bigreal );
           end;

    This loop would count the number of times the RDP instruction was used 
before a  successful tuple match was found.  In Original Linda from Scientific 
Computing Associates, Inc.  this loop would appear as

         
         counter := 1;
         while not rdp ( 'info', bigreal ) do;
           inc ( counter );

    This is not a big change but it is one that should be kept in mind when 
using the RDP and  INP instructions.

EVAL

    The EVAL instructions is used to send a procedure to be executed by a 
worker.  PCS-Linda only allows one element in the tuple used for the EVAL 
instruction

    *  The first element must be &procedure name



    The name of the tuple must be 'work'.  The worker system software has 
been precompiled  to look for a tuple of this name with the above elements.  
Because duplicate elements are allowed  in tuple space, the name 'work' will 
not cause a problem when sending more than a single  procedure to be 
executed by workers.  Thus the tuples

                      eval ( 'work', &compute );

                      eval ( 'work', &result );

will not conflict with each other.

Tuple Size

    The tuple size of the present Parallel Lan System is 16000 bytes.  This will 
allow a large  amount of data to be sent between machine per instruction.  If 
this is not acceptable for your  situation, you receive garbage when trying to 
execute your parallel program, ( the workers will  probably get confused as 
your code executes ), call us and we can increase your systems tuple  size. 

What Does OUT (); Produce

 Lastly, we would like to show what the instruction

         var

           start_col : integer;
           results   : array[1..200] of integer;           

         out ( 'col', &start_col, &results );

produces when put through the Linda Conversion Program.

begin
make_tuple ( 3, 'c', 'o', 'l', ' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ', @start_col, sizeof 
(start_col), yes,
@results, sizeof (results), yes,
nil,0,null,
nil,0,null,



nil,0,null,
nil,0,null 
);
send_tuple ( out );
end;

    All of the above is required for a single PCS-Linda
instruction.  It is beyond the scope of  this guide to detail what is being done 
here.  For more information about the technical nature of  the Parallel Lan 
System consult the paper - Parallel Lan System - A Course In Overcoming.



                         An Example

    Let's start using the things we have learned by formulating an example 
exercise.  We want  to have multiple processors find the sum of all the 
integers between 1 and 20.  We want to write  the program in PCS-Linda and 
Turbo Pascal.  Because of the nature of the PLS, if your system  only has a 
single worker, the code will still execute correctly.

    We want our developer to put the numbers 1 through 20 into tuple space 
and wait for a  sum to be computed.  the first thing we should consider is 
what our workers are going to do.

    Our workers are suppose to take a number and add it to a sum.  The 
workers are going to  get this number and the sum from tuple space.  So let's
get these two things

                   in ( 'num', a );
                   in ( 'sum', sum );

    Both a and sum will be declared as integers for this problem.  Once the 
worker has these  two things, it will add the number in a to the running sum.

                   sum := sum + a;

    After which, the worker has to put the new sum back in tuple space.

              out ( 'sum', &sum );

    The worker is finished.  Several questions should come to mind.  First of 
all, why did we  IN both a and sum, why not use RD instead.

    The first thing that we want to happen is a worker to get the sum, which 
should be zero  since we are starting the addition sequence.  The worker 
should then get one of the numbers to  add to the current sum.  The first 
worker will request the current 'sum' tuple and a 'num' tuple.   The worker 
will add the number to the sum and get a value of 1 for sum.  This new sum 
is placed  back in tuple space for the next worker.  If we did not remove the 
'sum' and 'num' tuple, we  would have a tuple space that was filled with 
multiple 'sum' tuples and duplicate 'num' tuples.   When the next worker 
requests a 'sum' and a 'num' tuple, it may get the 'sum' tuple that has a  
value of 0 and not the one with the value of 1.

    The duty of the developer program was to put the work
procedure and necessary values in  tuple space.  The code will look like



                   out ( 'sum', 0 );
                   for i := 1 to 20 do
                     begin
                       eval ( 'work', &worker );
                       out ( 'num', &i );
                     end;

    The developer will end by INing the ending sum and printing the result.

                   in ( 'sum', &sum );

The program looks like this:

         program add;
         {$N+,E+,F+}
         uses work, both;

         var  i, sum : integer;

         procedure startup;
         begin
           exitsave := exitproc;
           exitproc := @myexit;
         
           master[1] := $--;
           master[2] := $--;
           master[3] := $--;
           master[4] := $--;
           master[5] := $--;
           master[6] := $--;

           init_system;
         end;

         procedure worker;
         var a, sum : integer;
         begin
           in ( 'num' , a );
           in ( 'sum', sum );

           sum := sum + num;

           out ( 'sum', &sum );
         end;



         begin
           startup;

           out ( 'sum', 0 );

           for i := 1 to 20 do
             begin
               eval ( 'work', &worker );
               out ( 'num', &i );
             end;

           in ( 'sum', sum );
           writeln ( sum );

           close_system;
         end;

Analysis

    Now look at this code carefully.  As soon as the worker receive their 
procedures to  execute, they try to IN two tuples named 'num' and 'sum'.  
But what does the developer do, it  immediately tries to IN the 'sum' tuple.  
Now we cannot predict who will get the 'sum' tuple first  but the developer is 
in line to get it.  We want the developer to IN the 'sum' tuple after all tuples  
have added the values to sum not while they are currently adding the values.

    We must put something into the code which will delay the developer from 
getting the  'sum' tuple until after all workers have added all values to sum.  
We could put a delay, time wise,  into the developer code.  Delays are 
dangerous though.  Too many parameters go into the  circumstances 
surrounding delays.  We need a tuple that can be increment when a value is 
added  to sum; like a loop control variable.  We can do this fairly easily in 
PCS-Linda.  Let's define a  tuple called 'count'

                   ( 'count', count );

    Before any values are added to sum, count should be set to zero and 
placed into the tuple  space.

                   out ( 'count', 0 );

    The worker code must include instructions to read the 'count' tuple and 
increment it when  a value is added to sum.

                   in ('count', count );



                   inc ( count );
                   out ( 'count, &count );

    The most important part is up to the developer.  We do not want to read 
the final 'sum'  tuple until after all values have been added to sum.  We have 
two instructions that can be used;  either IN or RD.  If we use RD it will leave 
the 'count' tuple in the tuple space.  So let's use IN.   But what do we want to
IN.  We want to read the final count of 20.

                   in ( 'count', 20 );

    This IN instructions will send a tuple to be matched to the master.  Nothing
will happen in  the developer until a match is made with the tuple 'count' 
having a value of 20.  

Final Code

         program add;
         {$N+,E+,F+}
         uses work, both;

         var  i, sum, count : integer;

         procedure startup;
         begin
           exitsave := exitproc;
           exitproc := @myexit;
         
           master[1] := $--;
           master[2] := $--;
           master[3] := $--;
           master[4] := $--;
           master[5] := $--;
           master[6] := $--;

           init_system;
         end;

         procedure worker;
         var a, sum : integer;
         begin
           in ( 'num' , a );
           in ( 'sum', sum );

           sum := sum + num;



           out ( 'sum', &sum );

           in ( 'count', count );
           inc ( count );
           out ( 'count' , &count );

         end;

         begin
           startup;

           out ( 'sum', 0 );
           out ( 'count', 0 );

           for i := 1 to 20 do
             begin
               eval ( 'work', &worker );
               out ( 'num', &i );
             end;

           in ( 'count', 20 );

           in ( 'sum', sum );
           writeln ( sum );

           close_system;
         end;

              



                              Mandelbrot

    Mathematicians are able to generate wonderful things with numbers.  One
particular thing created from numbers are pictures.  The mandelbrot complex
number set is a  set of numbers that when put through a particular set of 
equations generates a picture.  This  manual is not the place for a detailed 
description of the mandelbrot calculations.  Books on fractals will typically 
have a detailed look at mandelbrot  numbers.  We will describe as much as 
needed for the calculations and the parallel program we  will write.  

Graphics Screen

    In order to plot a picture on a graphics screen, we have to create a 
relationship between  each of the pixels on the screen and a particular 
complex number.  For the mandelbrot program  we present, we are going to 
concentrate on a 320 x 200 portion of the VGA graphics screen  available on 
IBM PCs or compatible.

    Since we are going to be using complex number is the
calculations, we need to define  what a complex number is.  A complex 
number has both a real and an imaginary part for each  number.  There will 
always be two number for every complex number.  Turbo Pascal does not  
have a complex number type.  Using the TYPE feature of Pascal, we can 
create a complex number type 

                             type
                                  complex = record
                                    realp,
                                    imag   : extended;
                                  end;

The nature of the calculations suggests that we use extended real units in 
order to achieve the best  possible accuracy.

For the mandelbrot calculations, a corner value is selected which acts as a 
reference point for the  calculations

                          bcorner : complex;

This corner represented the upper left hand corner.  For the standard 
mandelbrot picture, bcorner  is given the value

                   bcorner.realp := -2.0;



                   bcorner.imag  := -1.25;

In addition to the corner, we must know the lengths of the sides of the 
picture both width and  height.  The value typically used for both the width 
and height is 2.50.  Notice that all of these  values can be changed to get 
different pictures of the mandelbrot set.

The last values needed for the calculations are called gap values.  The 
calculations are such that  the precision of the numbers can be changed for 
different screen resolutions.  The calculations use  two different gap values, 
one for the width of the graphics screen and one for the height.  

                   gap1 : extended; {width}
                   gap2 : extended; {height}

Because all of the calculations will use the same gap values, they can be 
predefined.  The gap  values are calculated by taking the length of each side 
( 2.50 ) and divide it by the number of  pixels in each dimension.  Therefore 
we have the values

                   gap1 := 2.50 / 320;
                   gap2 := 2.50 / 200;

What these gaps say is there is 2.50/320 space between pixels on the 
graphics screen being used  to display the mandelbrot number set.  When 
higher resolution screens are used, the gap gets  smaller and smaller thus 
enhancing the resolution of the picture.

Sequential Program

    We have the basic values for the mandelbrot picture we wish to procedure.
The only thing left is to do the actual calculations. The calculation that must 
be done  for each pixel is

                   z := z2 + bcorner;

    When the size of z grows to be greater than 4.0, we can stop the 
calculations.  Mandelbrot  numbers are characterized by not approaching 4.0.
Therefore, these number could be put through  the above equation many 
times.  This suggests that we need some sort of variable to control the  total 
number of times we do the
calculation.  A good control value would be 50.  If a value is put  through the 
calculation 50 times and the size is less than 4.0, the number belongs to the 
mandelbrot set.  Values in the mandelbrot set
are colored black in our picture.  Values that reach 4.0 before 50 are colored 



different colors.  

    The actual calculation procedure will appear this way

function calculate ( col, row, bcorner, ncomplex ) : integer;

begin
 size := 0.0;
 result := 0;
 original.realp := ncomplex.realp;
 original.imag  := original.imag;

 while ( results < 50 ) and ( size < 4.0 ) do
   begin
     original.realp := sqr(original.realp) - sqr ( original.imag 

) + ncomplex.realp      
     original.imag  := 2*original.realp*original.imag + 

ncomplex.imag;       
     size := sqr ( original.realp ) + sqr ( original.imag );            inc ( result );     
   end;
 calculate := result;

end;

    This function is performed for each pixel in the screen.  In a 320 x 200 
graphic screen  there are 64000 calls to this function.  In a large graphics 
screen such as 1024 x 768, there would  be 786,432 calls to the function.

    One parameter in the equation not yet examined is ncomplex.  Ncomplex 
is a complex  number which represents the actual pixel on the graphics 
screen. Ncomplex is calculated by  adding the distance the pixel is from the 
corner of the screen

         ncomplex.realp := current_column_pixel * gap1 +
bcorner.realp;           

ncomplex.imag  := current_row_pixel * gap2 + 
bcorner.imag;

    So each pixel starts at the bcorner and adds the number of gaps in each 
direction the pixel  is from the upper left corner, thus multiplication by the 
gaps.

The entire sequential program appears as

program mandel;



{$N+,E+,F+}  (* use 8087 if present or emulate if not *)

uses dos, crt , graph;

type

 complex = record
         realp : extended;
         imag  : extended;
   end;

var

 bcorner,
 ncomplex   : complex;
 ccol,
 crow,
 row,
 column,
 result       : integer;
 gap1,
 gap2,
 side1,
 side2        : extended;

procedure get_coordinates;

begin

 clrscr;
 write ( 'Enter the real part of the lower left corner ( -2.0 ) :');     readln 
( bcorner.realp );
 write ( 'Enter the imaginary part of the lower left corner ( -1.25 ) :');     readln
( bcorner.imag );
 write ( 'Enter the length of real edge  ( 2.50 ) :'); 
   readln ( side1 );
 write ( 'Enter the length of imaginary edge ( 2.50 ) :');     readln ( side2 );
 write ( 'Enter the pixels length of a row ( 320 ) :');
   readln ( row );
 write ( 'Enter the pixels length of a column ( 200 ) :');     readln ( column );

end;

procedure compute_stuff;

begin



 gap1 := side1 / row;
 gap2 := side2 / column;

end;

procedure prepare_screen;

var

 graphdriver,
 graphmode      : integer;

begin
 graphdriver := vga;
 graphmode   := vgahi;
 initgraph ( graphdriver , graphmode , 'c:\tp' );

end;

procedure plot ( crow , ccol , result : integer );

var
 color : word;

begin

 color := 1;

 if result < 2 then color := 1;
 if result > 2 then color := 9;
 if result > 4 then color := 2;
 if result > 6 then color := 10;
 if result > 8 then color := 4;
 if result > 10 then color := 12;
 if result > 12 then color := 5;
 if result > 14 then color := 13;
 if result > 16 then color := 8;
 if result > 18 then color := 7;
 if result > 20 then color := 0;
 putpixel ( ccol , crow , color );

end;

procedure get_complex;



begin

 ncomplex.realp := ccol * gap1 + bcorner.realp;
 ncomplex.imag  := crow * gap2 + bcorner.imag;

end;

procedure calculate_mandel;

var

 original : complex;
 size     : extended;

begin

 result := 0;
 original.realp := 0.0;
 original.imag  := 0.0;

 while ( result <= 21 ) and ( size < 4.0 ) do
   begin
     original.realp := original.realp*original.realp -

orginal.imag*original.imag + ncomplex.realp;
     original.imag  := 2 * ( original.realp * original.imag )  + 

ncomplex.imag;       
size := original.realp * original.realp + original.imag  * 
original.imag;

     inc ( result );
   end;

end;

begin

 get_coordinates;
 prepare_screen;
 compute_stuff;
 for ccol := 1 to row do
   for crow := 1 to column do
     begin
       get_complex ( crow , ccol , gap1 , ncomplex , bcorner );         
calculate_mandel ( ncomplex , result );
       plot ( crow , ccol , result );
     end;



end.

    This program can be compiled using Turbo Pascal 5.5 or 6.0 and executed 
to demonstrate  the picture that will be produced.  The row and column 
entries can be increased to 640 by 480 if  desired.

Parallel Programming Methods

    The mandelbrot program represents a large number of tasks which 
perform the same operations on a large set of data.  Each and every pixel in 
the graphics screen  has to be calculation on using the calculate function 
presented above.  There is no way around it.   Thus if we have two processor 
available for work, we can be doing two pixels at an given moment instead of
just one.  Just think, if we had 64000 processors, all  pixels would be 
calculated at the same time.  Think about the speed up.  

    Our job is to write a parallel program using PCS-Linda and Turbo Pascal 
that will  perform the mandelbrot program using any given number of 
processors.  

Developer

    The easiest way to approach this problem is to first consider the job or 
duties of the developer.  After we have determined the job of the developer, 
we can look at  the code the worker will execute.  Recall from above that the 
calculations for each pixel all rely  on a set of simple calculations which were 
performed only once.  These include

         number of pixels in each column
         number of pixels in each row
         length of column
         length of row
         gap value for column
         gap value for row
         corner value
         column to compute
         number of columns to compute
In addition, the graphics screen of the system must also be initialized.  

Columns

    We must ask a question about how to distribute the work to the workers.  
The sequential  program computed pixels one at a time.  Each pixel is then 



plotted on the screen.  We could allow  each worker to only compute one 
pixel at a time.  Because of the nature of the Parallel Lan  System, there 
would be some communication overhead for each pixel.  In reality it might 
take  longer for a number of processors to compute the screen than it would 
for a single processor if we  only allow each worker to compute one pixel. 

    A solution to this problem may be to allow each worker to compute an 
entire column of  pixels.  This would significantly cut down on the 
communication because there would only be  one exchange for every 200 
pixels if our example problem.  This is a much better solution.  By allowing 
each  worker to computer a column of pixels, we can introduce another  
value that will tell each worker how many columns to compute.  We might 
run tests to determine  if each worker should have one column, two, four, or 
more between
communication calls.

Results

    The developer is responsible for setting up the calculations as well as 
receiving the results.   As each worker finishes its column or columns, it will 
have to put the results into the tuple space  for the developer to access.  
Once the developer has a set of results, it can pass to them to a procedure to
be plotted.  After 320 result packets have been  received, the developer can 
perform any housecleaning necessary and quit execution.

The code for the developer looks like this

procedure plot ( col : integer; results : resu );

var i,j   : integer;
   color : word;

begin

for j := 0 to num_col-1 do
 for i := 1 to 200 do
   begin
     if results[i+j*200] < 20 then color := 1;
     if results[i+j*200] > 20 then color := 9;
     if results[i+j*200] > 40 then color := 2;
     if results[i+j*200] > 60 then color := 10;
     if results[i+j*200] > 80 then color := 4;
     if results[i+j*200] > 100 then color := 12;
     if results[i+j*200] > 120 then color := 5;



     if results[i+j*200] > 140 then color := 13;
     if results[i+j*200] > 160 then color := 8;
     if results[i+j*200] > 180 then color := 7;
     if results[i+j*200] > 200 then color := 0;

     putpixel ( col+j , i, color );
   end;
end;

begin

 start_up;

 graphdriver := vga;
 graphmode   := vgahi;
 initgraph ( graphdriver, graphmode, 'a:' );

 gap1 :=  2.50 / 320;
 gap2 :=  2.50 / 200;
 bcorner.realp := -2.0;
 bcorner.imag  := -1.25;

 cur_col :=    1;
 tot_col :=  320;
 pix_col :=  200;
 num_col :=    1;

 for i := 1 to num_proc do
   begin
     eval ( 'work', &adder );
     out ( 'stuff', &gap1, &gap2, &bcorner );
   end;

 out ( 'screen', &cur_col, &tot_col, &pix_col, &num_col );
 for i := 1 to tot_col div num_col do
   begin
     in ( 'col', start_col, results );
     plot ( start_col, results );
   end;

 readln;

 { system_shutdown }
 close_system



end.

Analysis

    The developer starts by calling the startup procedure for initialization of 
the network.   After the network is setup, the screen must be changed to 
graphics mode. 

                   graphdriver := vga;
                   graphmode   := vgahi;
                   initgraph ( graphdriver, graphmode, 'a:' );

    These Turbo Pascal commands instruct the graphic card in the PC to switch
to VGA  mode.  The Turbo Pascal BGI file for VGA must be on the drive 
specified in the initgraph  statement.

    The developer proceeds to establish the constants for the program.  Gap1,
gap2, and  bcorner are the same as in the
sequential program.

                   gap1 := 2.50 / 320;
                   gap2 := 2.50 / 200;
                   bcorner.realp := -2.0;
                   bcorner.imag  := -1.25;

    The next four statements set up the working environment for the workers. 

                   cur_col := 1;
                   tot_col := 320;
                   pix_col := 200;
                   num_col := 1;

    Cur_col is the number of the next column that needs to be computed.  
Tot_col is the total  number of columns that are to be computed.  Pix_col is 
the total number of pixels in each  column.  Num_col is the step value or the 
number of columns each worker is suppose to compute.   These values will 
all be shared by the different workers in the system.

    Once all of the values are computed, the developer is ready to put the 
work and  initialization values in tuple space for the workers to pick up.

                   for i := 1 to num_proc do
                   begin



                     eval ( 'work', &adder );                                       out  ( 'stuff', 
&gap1, &gap2, &bcorner );                        end;

    Num_proc is the total number of processor on the system or the number of
processors to  be utilized in the calculations.  The common values for the 
workers is the next tuple put into tuple  space.

         out ( 'screen', &cur_col, &tot_col, &pix_col, &num_col );

 The developer is now free to concentrate on its own activities mainly 
receiving and plotting the  results.

            for i := 1 to tot_col DIV num_col do                 
   begin

               in ( 'col', start_col, results );
               plot ( start_col, results );
             end;

    Num_col is used to divide the total number of 'col' tuples to receive based 
on the number  of columns each worker will calculate.

    The last thing the developer needs to do is clean up the tuple space and 
shutdown the  system

 in ( 'screen', cur_col, tot_col, pix_col, num_col );               close_system.

Worker

    Next we must determine what the duty of the worker is.  The worker must 
IN the common  data from tuple space.  This data would include the gaps 
and corner value.  The worker would  then IN the screen information.  It is 
this information that will determine whether or not a column needs to be 
computed.  If the worker IN the tuple and the cur_col to  compute is greater 
than the tot_col value, then the system has successfully computed all 
columns.   The worker ca quit executing this procedure.  If the cur_col is not 
greater than the tot_col value,  it will have to determine how many columns 
to compute and compute them.  The code for the  worker looks like this

procedure adder;

type

 complex = record
   realp,



   imag   : double;
 end;

var

 plen : integer;
 pkt  : pointer;
 a_tuple : tuple_pointer;

 gap1,gap2,
 a,b,c,
 size      : double;
 bcorner,
 ncomplex,
 original  : complex;
 cur_col,
 tot_col,
 pix_col,
 num_col,
 cc,
 row,
 r,
 indexc,
 result,
 start_col,
 end_col   : integer;
 results   : array[1..200*num_col] of integer;
 finished  : boolean;

begin

 in ( 'stuff', gap1, gap2, bcorner );

 in ( 'screen', cur_col, tot_col, pix_col, num_col );
 if cur_col > tot_col then
   begin
     finished := true;
   end
 else
   begin
     finished := false;
     start_col := cur_col;
     end_col := cur_col + num_col - 1;
     cur_col := cur_col + num_col;



   end;
   
   out ( 'screen', &cur_col, &tot_col, &pix_col, &num_col );     

 while not finished do
   begin
     indexc := 0;
     for cc := start_col to end_col do
       begin
         for r := 1 to pix_col do
           begin
             ncomplex.realp := cc * gap1 + bcorner.realp;
             ncomplex.imag  := r * gap2 + bcorner.imag;
             result := 0;
             size := 0.0;
             original.realp := 0.0;
             original.imag  := 0.0;
             while ( result <= 21 ) and ( size < 4.0 ) do
               begin
                 a := original.realp * original.realp;
                 b := original.realp * original.imag;
                 c := original.imag  * original.imag;
                 original.realp := a-c+ncomplex.realp;
                 original.imag  := b+b+ncomplex.imag;
                 size :=
original.realp*original.realp+original.imag*original.imag;                   inc 
( result );
               end;
             results[indexc+r] := result;
           end;
         indexc := indexc+pix_col;
       end;
     out ( 'col', &start_col, &results );

     in ( 'screen', cur_col, tot_col, pix_col, num_col );
     if cur_col > tot_col then
       begin
         finished := true;
       end
     else
       begin
         start_col := cur_col;
         end_col := cur_col + num_col-1;
         cur_col := cur_col + num_col;
       end;



     out ( 'screen', &cur_col, &tot_col, &pix_col, &num_col );     end;

end;

 The worker begins by INing the common information

                        in ( 'stuff', gap1, gap2, bcorner );

followed by the screen information

                        in ( 'screen', cur_col, tot_col, pix_col, num_col )

and determines if there is anything to compute

                        if cur_col > tot_col then
       
if there isn't anything to do, the boolean variable finished will be set to true 
and the compute loop  will not be entered.  If there is work to do, the worker 
will obtain its starting columns and put it  into the variable start_col.  The 
ending columns will be put into the variable end_col.  The cur_col will be 
increased the number of columns the worker is  going to compute.  Once all 
of this has bee determined, the screen tuple is put back into tuple  space.

         begin
           finished := true;
         end
       else
         begin
           finished := false;
           start_col := cur_col;
           end_col := cur_col + num+col - 1;
           cur_col := cur_col + num+col;
         end;
       out ( 'screen', &cur_col, &tot_col, &pix_col, &num_col );

    Notice that in either case of the if statement, the screen tuple is put back 
into the tuple  space.  If this were not done, the other workers in the system 
would block because they could not  find the screen tuple.  Therefore, it must
be put back into tuple space.  

    In order to simplify the way results are sent back to the developer, a single
array was used  that includes enough space for the total number of pixels a 
worker computes.  This includes the  situation where multiple columns are 
computed.  The indexc variable does the job of coordinating where the 
results will go in the array.  The first column of pixels will  use the locations 1-
200 while the next columns uses the location 201-400, etc.  Indexc is  



incremented by pix_col for every column computed.

    Once all columns have been computed for this particular group of 
columns, they are put  into tuple space with the

              out ( 'col', &start_col, &results );

command.  The worker will then IN another screen tuple and begin again. 

Complete Code

 The complete code for the system is 

program devman;

{$N+,E+,F+}

uses dos, crt, both, work, graph;

const
 num_colu = 2;
 num_proc = 1;

type
 complex = record
   realp,
   imag   : double;
 end;

 resu = array[1..200*num_colu] of integer;

var
 gap1,
 gap2             : double;
 bcorner          : complex;

 i,
 j,
 cur_col,
 pix_col,
 start_col,
 num_col,
 tot_col          : integer;
 results          : resu;



 graphdriver,
 graphmode        : integer;

procedure start_up;

begin

 exitsave := exitproc;
 exitproc := @myexit;

 master[1] := $00;
 master[2] := $00;
 master[3] := $C0;
 master[4] := $05;
 master[5] := $86;
 master[6] := $24;

 init_system;

end;

procedure adder;

type

 complex = record
   realp,
   imag   : double;
 end;

var
 gap1, gap2,
 a,b,c,
 size      : double;
 bcorner,
 ncomplex,
 original  : complex;
 cur_col,
 tot_col,
 num_col,
 pix_col,
 cc,



 row,
 r,
 indexc,
 result,
 start_col,
 end_col   : integer;
 results   : array[1..200*num_colu] of integer;
 finished  : boolean;

begin

 in ( 'stuff', gap1, gap2, bcorner );

 in ( 'screen', cur_col, tot_col, pix_col, num_col );
 if cur_col > tot_col then
   begin
     finished := true;
   end
 else
   begin
     finished := false;
     start_col := cur_col;
     end_col := cur_col + num_col - 1;
     cur_col := cur_col + num_col;
   end;
   out ( 'screen', &cur_col, &tot_col, &pix_col, &num_col );

 while not finished do
   begin
     indexc := 0;
     for cc := start_col to end_col do
       begin
         for r := 1 to pix_col do
           begin
             ncomplex.realp := cc * gap1 + bcorner.realp;
             ncomplex.imag  := r * gap2 + bcorner.imag;
             result := 0;
             size := 0.0;
             original.realp := 0.0;
             original.imag  := 0.0;
             while ( result <= 21 ) and ( size < 4.0 ) do
               begin
                 a := original.realp * original.realp;
                 b := original.realp * original.imag;
                 c := original.imag  * original.imag;



                 original.realp := a-c+ncomplex.realp;
                 original.imag  := b+b+ncomplex.imag;
                 size :=
original.realp*original.realp+original.imag*original.imag;                   inc 
( result );
               end;
             results[indexc+r] := result;
           end;
         indexc := indexc+pix_col;
       end;
     out ( 'col', &start_col, &results );

     in ( 'screen', cur_col, tot_col, pix_col, num_col );
     if cur_col > tot_col then
       begin
         finished := true;
       end
     else
       begin
         start_col := cur_col;
         end_col := cur_col + num_col-1;
         cur_col := cur_col + num_col;
       end;
     out ( 'screen', &cur_col, &tot_col, &pix_col, &num_col );     end;

end;

procedure plot ( col : integer; results : resu );

var i,j   : integer;
   color : word;

begin

for j := 0 to num_col-1 do
 for i := 1 to 200 do
   begin
     if results[i+j*200] < 20 then color := 1;
     if results[i+j*200] > 20 then color := 9;
     if results[i+j*200] > 40 then color := 2;
     if results[i+j*200] > 60 then color := 10;
     if results[i+j*200] > 80 then color := 4;
     if results[i+j*200] > 100 then color := 12;



     if results[i+j*200] > 120 then color := 5;
     if results[i+j*200] > 140 then color := 13;
     if results[i+j*200] > 160 then color := 8;
     if results[i+j*200] > 180 then color := 7;
     if results[i+j*200] > 200 then color := 0;

     putpixel ( col+j , i, color );
   end;

end;

begin

 start_up;

 graphdriver := vga;
 graphmode   := vgahi;
 initgraph ( graphdriver, graphmode, 'a:' );

 gap1 :=  2.50 / 320;
 gap2 :=  2.50 / 200;
 bcorner.realp := -2.0;
 bcorner.imag  := -1.25;

 cur_col :=    1;
 tot_col :=  320;
 pix_col :=  200;
 num_col := num_colu;

 for i := 1 to num_proc do
   begin
     eval ( 'work', &adder );
     out ( 'stuff', &gap1, &gap2, &bcorner );
   end;

 out ( 'screen', &cur_col, &tot_col, &pix_col, &num_col );

 for i := 1 to tot_col div num_col do
   begin
     in ( 'col', start_col, results );
     plot ( start_col, results );
   end;



 in ( 'screen', cur_col, tot_col, pix_col, num_col );

 readln;

 { system_shutdown }
 close_system

end.

    This code is contained on the samples disk provided with the system.  
Convert it to  standard Turbo Pascal, compile it, and run it for an interesting 
result.  In order to understand what  the code is doing exactly, follow the 
code for a single developer and a single worker.  Notice the changes that 
take place in the screen tuple.  This screen tuple is the  main controller of the
entire program.

    Once you have the code operational, try changing some of the initial 
values to obtain  different pictures.  The color codes ( numbers ) used in the 
plotting routine can also be change to  different sequences.  These number 
were taken directly from those in the Turbo Pascal Reference Manual.


