
 A Guide to Parallel Programming

 Using

 PCS-Linda and the Parallel Lan System

 Parallel Computer Solutions

 November 30, 1991

Contents

Disclaimer: 4

Linda 5
The Language Linda 5
Linda Primitives 6
Tuples 6
Elements 6
Actuals 6
Formals 7
Tuple Space 7
Tuple Matching 8
Further Examples 9
Note on real elements 9

Linda Instructions 10
IN 10
RD 10
OUT 11
EVAL 11
INP 12
RDP 12
Hello World Example 12

Parallel Lan System 14
Requirements 14
Packet Drivers 15

Master 17
Multiple Processor Communication 17
Different Masters 18
Machine 19
DOS 19
Extended Memory 19
Master Installation 20

Worker 22
Worker Installation 22

Developer 24
Compiler Directives 26
Units and System Code 27

Startup Procedure 27
Procedure Declarations 30
Global Variables 30
Readln/Writeln 30
Formal Parameters 31
Nesting Procedures 31
Multiple Procedures 31
CAUTION! 31
Developer Program Design 32
Tuning 32
Debugging 33
Main 33
Skeleton Code 34
What the Developer Doesn't Show 35
RELAX! 35

PCS-Linda 36
Linda Conversion Program 36
Tuple Elements 36
Actuals - Integer/Real 37
Integers 37
REALS 38
Formals 38
INP & RDP 38
EVAL 39
Tuple Size 40
What Does OUT (); Produce 40

An Example 41
Analysis 43
Final Code 44

Mandelbrot 46
Graphics Screen 46
Sequential Program 47
Parallel Programming Methods 51
Developer 51
Columns 52
Results 52
Analysis 54
Worker 55
Complete Code 59

Disclaimer:

Copyright 1991 Parallel Computer Solutions. All Rights Reserved

The terms and conditions governing the sale of Parallel Computer Solutions,
hardware products and the licensing of Parallel Computer Solutions, software
consist solely of those set forth in the written contracts between Parallel
Computer Solutions, and its customers. No representation or other
affirmation of facts contained in this publication, including but not limited to
statements regarding capacity, response time, suitability for use or
performance of products described herein shall be deemed to be a warranty
by Parallel Computer Solutions, for any purpose or give rise to any liability by
Parallel Computer Solutions, whatever.

No part of this document may be copied or reproduced in any form or by any
means without the prior written consent of Parallel Computer Solutions.
Information is subject to change without notice.

Printed in the United States of America.

Linda is a registered trademark of SCIENTIFIC Computing Associates, Inc.
PCS-LINDA is a trademark of Parallel Computer Solutions Parallel Lan System

is a trademark of Parallel Computer Solutions Turbo Pascal is a copyright of
Borland International, Inc.

 Linda

 Linda is a parallel processing coordination language. To most computer
scientists and engineers, this is a new concept. Commonly, sequential
languages such as C and Pascal are enhanced to support parallel processing;
Concurrent C and Parallel Pascal are two such languages. However, if we
look at the actual code that makes up a parallel application we see that not
all of the code is parallel. It can't be. If a parallel application was completely
parallel, one instruction would be executed on each machine. This is not
reasonable of course. Parallel programs are written such that certain pieces
of code are farmed off to other processors while other code is executed on
the host machine to pull all of the pieces together. Now there are machines
where this is not true but we will not discuss those. These pieces of code
farmed to other processor are typically small and perform a specific
operation on some data. They are commonly called processes. Let's look
at a common real world situation to put these ideas together.

 Large, busy offices in a corporation usually are made up of many different
people doing some task or process. If we were to let this office run itself, it
would become a mess in a very short time. Some people would be doing
tasks that had already been done. There would be miscommunication. You
can probably think of many more things that could go wrong. What this
office needs is an office manager. An office manager isn is responsible for
pulling the individual people into a working team. Each team member
working for the greater good of the corporation.

The Language Linda

 The same can be said for Linda. Linda is a language developed at YALE
University and is copyrighted by Scientific Computing Associates, Inc. Linda
however lacks the common features you and I commonly think of when we
hear about a new language. There are no loops, decisions, records, etc in
Linda. All of these common functions are provided in some other language
used in conjunction with Linda. This language could be C, Pascal, Forth or
any other language. The primitive functions of Linda are coded in a
particular language and can be used just as any other statement can be
used.

 Linda coordinates the activities of many different executing processes on
different machines. As we will see later, these machines do not have to be a
single parallel machine such as the Connection Machine. The Linda system
we will be using coordinates the activities of different processes running on
IBM PCs connected by an ethernet local area network.

 As we describe some of the characteristics and feature of Linda, we will
introduce our version of Linda called PCS-Linda. There are features of Linda
that can be difficult to implement on top of an existing language and
compiler therefore, we have not implemented everything in our version.

Linda Primitives

 It may be surprising to find out that Linda has just six instructions. These
six instructions are in, out, rd, eval, inp, rdp. Each of which will be discussed
in detail later in this section. First we must talk about how Linda coordinates
processes. Linda uses a distributed data structure called a tuple. A tuple is
a data structure that can be accessed by any process thus the distributed
part.

Tuples

 Tuples have two parts: a name and some number of elements. The name
of a tuple is any combination of up to sixteen
characters. The name serves as the primary matching characteristic for the
tuples.

 (name, e1, e2, e3, e4, e5, e6)

 The name can be either a variable (string) or enclosed in single quotes.
The elements are filled from left to right,

Elements

 A tuple can have from zero to six elements. Each of the elements will be a
value or variable of a particular type
supported in the host language Linda is coded in. In PCS-Linda the types
can be integer, real, array, and record. Strings are not allowed in the current
PCS-Linda system. Elements, in addition to having a specific type, can have
a further description of actual or formal.

Actuals

 When we speak of actual, we are concerned with an actual value. This
value can be either the numerical representation or can be contained in a
variable. When using a number as an element, we simply state the number
in one of the element fields.

 ('example1', 1, 2)

is an example of a tuple with name 'example1' and actuals 1 and 2, each of
type integer. If we had two variables a and b of type integer,

 a, b : integer;

and we wanted to use the values contained in these variables, we would
precede each of the variable by the & symbol. The tuple

 ('example2', &a, &b)

would be an example of a tuple with name 'example2' and actuals a and b,
of type integer. If this tuple was used in a program, the integer values
assigned to the variables a and b would be compiled into the tuple
definition.

 In addition to integers, reals or floating point values can be used as
actuals. Thus we can have

 ('example3', 3.141592, 1.2e+08)

can also be used as a tuple. In most cases, the only thing that differentiates
an integer from a real number is the decimal point and therefore must be
included when specifying a real number.

Formals

 Formal elements are more like variables. They are used to collect a value
from a tuple. They are distinguishable by the lack of the & symbol. A tuple
with formal elements would appear as

 ('example4', a, b, c)

 The variables a, b, and c would be assigned to values returned after a
match has taken place on the tuple. Formal variables can be any of the
previous data types mention except strings.

Tuple Space

 Now that we have tuples, we have to have a place to keep them. This

storage place is called the tuple space. The tuple space could be envisioned
as a large bag full of tuples.
 The tuple space can be likened to shared memory in that all processors
have access to the tuples in the tuple space. However, unlike shared
memory, there are no critical sections in the tuple space. Any of the tuples
can be used by any processor at any time. Now there are ways to control
access to the tuple space by using tuples that emulate semaphores and the
like. In order for a process to access a tuple, a matching has to take place.
Thus a processor would sent a template of the tuple it would like to match in
the tuple space. The machine holding the tuple space would perform a
search on all of the tuple in the tuple space. As soon as a match is found,
the matching tuple is sent to the processor that requested the match.

 The tuple space in our system is located on a single machine called a
master. The master is responsible for holding tuples and matching tuples.
When tuples are put into the tuple space, the master does not check for
duplicate tuples. Any number of
duplicate tuples can exist in the tuple space. There are specific rules that
the master will follow when matching tuples.

Tuple Matching

RULE 1 : Tuple names must match both length and character for character.

RULE 2 : Actuals match actuals if of the same type and contain the same
value.

RULE 3 : Actuals match formals if they are of the same type and length.

RULE 4 : Formals never match formals.

 Let's look at each rule using some examples. Assume we have the
following tuples in our tuple space.

 ('stuff', row, col, 1);

 ('coord', &x, &y);

 ('work', &segments, &adder);

 ('Junk', 1, 3, 5);

 Row, col, x, y are integers;
 Adder is a procedure;

 Segments is a record of length 18;

 We have to match the tuple ('stuff', 100, 200, start) with a tuple in our
tuple space. First off, RULE 1 is satisfied with the first tuple in tuple space
because they both have names of length 5 and match character for
character (stuff = stuff). The elements of the tuples are matched next.
The tuple to be match has an actual element of type integer in the first
position and value 100. The first tuple in tuple space has a formal of type
integer in the first position. By RULE 3, the first elements match in each of
these tuples. Further study shows that the second and third elements
match as well.

Further Examples

 The tuple ('stuff', 3.4, 200, start) does not match the tuple ('stuff', row,
col, 1) because the types of the first element are different.

 The tuple ('stuff', &a, &b, &start) may or may not match the tuple
('stuff', row, col, 1). A determination cannot be made because we do not
have a value for the variable start. If start equals one, then we have a
match but if start equals any other integer, the tuples do not match.

Note on real elements

 As we all know, computers have a tough time representing real or floating
point numbers well. Some numbers can be represented exactly such as 0.5
but how does a computer represent the value of 2/3. At some point, the
computer will have to round to 0.666666667 which is not correct. This
inaccuracy must be kept in mind when using real number as element types
in tuples. If during a calculation, a real number is used in a tuple, there may
not be a match because of rounding. Thus it is probably wise to avoid
matching on reals if at all possible. In most cases, you will probably get a
match but that one time when you don't, keep the above in mind when
looking for the problem.

 Linda Instructions

 Now that we have tuples and a place to put them, we must look at the
individual Linda instructions and determine what each one of them does and
how to use them. This section will be ended with the common 'Hello World'
problem coded in Linda and Pascal. The first four Linda instructions
discussed are the most common ones used. The last two are variants of two
of the common ones.

IN

 The IN instruction is used to request a match on a tuple from tuple space.
The format of the instruction is

 IN (name, e1, e2, e3, e4, e5, e6)

 Only the elements necessary are included in the tuple. The tuple specified
with the IN instruction is sent to the master for a match with a tuple in tuple
space. If there is a positive match, the master will return the matching
tuple. If there are any formal elements, they are assigned the appropriate
values from the matching tuple. If there is not a tuple in tuple space that
matches the tuple sent by the IN instruction, the master keeps the tuple and
continually check the tuple space for a match. In the meantime, the
processor that sent the IN instruction will block execution until a matching
tuple is sent. Once that master has a match, it is sent. When the master
sends the matching tuple to the requesting processor, it is permanently
deleted from tuple space. If there are multiple copies of the same tuple in
tuple space, the first one is taken. The master will take the first tuple that it
determines matches the tuple sent with the
instruction.

RD

 The RD instruction is somewhat identical to the IN
instruction. The format of the RD is

 RD (name, e1, e2, e3, e4, e5, e6)

 The RD instruction sends a tuple to the master for a match with a tuple in
tuple space. If the master has a match, it sends a copy of the tuple found in
tuple space. If the master does not have a match, it will continually search
tuple space for a match. Meanwhile, the processor that sent the RD
instruction will block execution until a tuple is returned. When the master
finds a tuple, it sends a copy of the tuple to the requesting processor. The

tuple is not deleted from tuple space. This allows a single tuple to be read
from any processor without the overhead of INing the tuple and OUTing the
tuple just to get a copy of the tuple. The RD instruction should be used
when communicating common data to a number of different processors.

OUT

 We have seen how to request tuples from tuple space but how do we get
tuples into tuple space to begin with. The OUT instruction enables us to put
tuples into tuple space. The format of the OUT instruction is

 out (name, e1, e2, e3, e4, e5, e6)

 The tuple with the OUT instruction is sent to the master and is put into
tuple space. Any number of the same tuples can be put into tuple space. In
all cases of actuals, the actual values are sent to the master in the tuple.
There are no pointers referencing data in a different processors memory.

 The master does not respond to the OUT instruction. It is simply taken for
granted the tuple is put into tuple space. Once an OUT has been performed,
any processor can access the tuple including the processor that issued the
OUT instruction in the first place.

EVAL

 The EVAL instruction is the most important of the Linda instruction.
Without it, the other instructions are of no use. The EVAL instruction is used
to put code into tuple space. This code is picked up by workers and
executed. The format of the EVAL instruction is

 eval (name, e1, e2, e3, e4, e5, e6)

 In PCS-Linda, the eval instruction has not been fully developed to the
specification of the original Linda EVAL. In PCS-Linda the format of the EVAL
instruction is

 eval ('work', &procedure);

 All EVAL instruction must name the tuple 'work'. Because tuple with the
same name can reside in tuple space at the same time this is not a problem.
The first element of the tuple will be an actual designated by the & operator
and the name of the
procedure that is to be put into tuple space. So if we wanted a procedure

called MANDEL to be put into tuple space to be executed, the following
instruction would be used

 eval ('work', &mandel);
INP

 The INP instruction is identical to the IN instruction except for one
condition. If the master finds a tuple match when the instruction is
received, it will return the tuple. If a tuple is not found in tuple space, the
master returns a null tuple to the requestor. Thereby allowing the INP
instruction to be evaluated as either true or false depending on whether or
not a tuple was matched from tuple space. PCS-Linda implementation
information of this instruction will be given later.

RDP

 The RDP instruction is identical to the RD instruction except the master
does not continually search for a match if its first attempt in unsuccessful. If
a tuple is found, the matching tuple is returned to the requestor. If the
master does not find a matching tuple in tuple space, the master will return
null. Thus allowing the RDP instruction to be evaluated as either true of
false depending on whether or not a tuple is returned.

 Those are the six instructions that make up the Linda coordination
language. Let's look at an example of a 'Hello World' program using Linda
and Pascal.

Hello World Example

 We will assume we are working on a system with 8 worker processors.
The beginning of our program would be standard Pascal.

 program hello;

 const
 num_proc = 8;

Next we have to write the procedure for the workers.

 procedure world;
 var
 count : integer;

 begin

 in ('count', count)
 inc (count);
 out ('count', &count
 out ('hello', &count);

 end;

 Now the main procedure.
 begin

 out ('count', 0);
 for i := 1 to num_proc do
 eval ('work', &world);

 for i := 1 to num_proc do
 begin
 in ('hello', proc);
 writeln ('Hello from processor', proc); end;
 in ('count', 8);

 end;

 The program begins with the tuple called COUNT being put into tuple
space with an integer actual of 0. This is followed by eight copies of the
WORLD procedure; one for each worker. The main program goes into a loop
requesting a HELLO tuple one at a time. Not that the first element is a
formal, thus we are only matching on the name of the tuple HELLO. The
formal element will have some value on each loop iteration. The numbers
my not be in order. As each tuple is found in tuple space, a message is
printed that says Hello from processor -. The code ends with an IN which
cleans up the tuple space.

 The workers are instructed to IN the COUNT tuple, increment the number it
finds in the first element position and put the tuple back in tuple space for
the next processor. After it does this, it puts a tuple in tuple space called
HELLO with the number it put into the COUNT tuple. Each worker will get a
different number to report back to the main code.

 Now as we stated above, this code will receive eight tuple with the name
HELLO is any order. If we changed the main programs loop slightly, we
could guarantee to get the HELLO tuple in order from 1 to 8.

 for i := 1 to 8 do
 begin

 in ('hello', &i);
 writeln ('Hello from process - ', i); end;

 We have changed the first element from a formal to an actual. Thus
instead of the master having to match the name, it must match the first
element as well. Therefore, the it will return a HELLO tuple only when the
first element is a 1.

 Parallel Lan System

 Now that we know how to program Linda and we have seen a parallel
program, we need to begin doing some real work. So now we can sit down
to our PC and begin programming the examples.

 Well not exactly. Our common PC is a single processor machine. We have
no way of dividing up work and allowing
different processors to work on the pieces. We have two options. We can
purchase an expensive parallel machine for several
thousands of dollars. Have it installed and teach ourselves the things
necessary to program the machine. Or we can use the Parallel Lan System.

 The Parallel Lan System is a software package that allows IBM PC or
compatible machines to operate as a parallel processor. The machines must
be connected together by an ethernet local area network. A minimum
system consists of three machines: a master, worker, and a developer.

 Using Turbo Pascal and the Parallel Lan System (PLS), a parallel program
can be constructed for any parallel algorithm we so desire. In addition, we
have a version of Linda called PCS-Linda that we will use to coordinate the
activities of the
different processes created our the parallel program.

 The PLS was created to co-exist with other network products on the
market such as Novell Netware and DECNet. The system will not interfere
with NCSA or PCSA or any of the TCP/IP programs. The Parallel Lan System
can even be configured to run several parallel programs on the same
network sharing the same processor of the system.

Configuration

 The configuration of the Parallel Lan System is very important to the
efficiency of the parallel system. The remaining sections will document the
different components of the PLS. Several examples will be presented in the
end of the guide.

Requirements

 The Parallel Lan System operates by using an ethernet local area network
(LAN). LANs are very popular among educational instructions and
businesses. Various packages are available to run on networks including

Novell Netware and MS Lan Manager.

 The Parallel Lan System communicates on an ethernet by way of a packet
driver. Most ethernet card manufacturers have these drivers available at no
cost. In addition, there are public domain packet drivers available for most
cards.

Packet Drivers

 Packet drivers are terminate and stay-resident (TSR) programs which act
as an interface between a developer and an ethernet card. Ethernet cards
use a hardware interrupt of a PC. When this interrupt is activated, the
packet driver code is activated to perform some function. Likewise, the
Parallel Lan System software is able to activate a software interrupt which
also activates the packet driver code for its own use. Software can be
written that locates the packet driver installed in a machine thus allowing an
PC and ethernet card to be used without changing the system software.

 Manufactures who provide packet drivers will also include information on
how to install them. Packet drivers can be used with most network
packages. An advantage of using packet driver is multiple applications can
access the same ethernet card. The packet driver has the ability to give a
packet from the LAN to one application or another based on a type field
located in the packet.

 What we want to do now is install the packet drivers for the machines the
system will run on. Follow the instructions given by the manufacturer. With
that, we want to verify that everything to this point is operating correctly.
On the disk labeled system software is a file called PKTINFO.EXE. When
executed, this program will give us information about the ethernet card and
packet driver installed on a particular machine. After the packet driver has
been installed in a machine, place the system disk in driver A: and type

 A:PKTINFO

If a page of information appears on the screen, the packet driver is working
correctly. If a message appears saying no packet driver was found then the
packet driver was not installed
correctly.

 After the packet drivers have been verified we want to check the LAN
itself. Located on the same disk is a program called TRANS.EXE. This is a
simple LAN communication program that will send and receive packets from
on PC to another. Pick two machines to execute this software on. One one
of them, write down the ethernet address as shown by PKTINFO. Inset the

system disk in drive A: and type

 A:TRANS
 Take the disk out and do the same for the other machine. On the PC that
will receive the packets press SHIFT and R. We now want to select what
receive mode to use. Press 2. The screen will blank and a status bar will
appear at the top. On the sender machine press SHIFT and S. We need to
select a receive mode as we did for the receive machine. The reason is
because the receiving machine will send an acknowledgement packet back
to the sender. So press 2. We are now asked if we want to use the
broadcast feature. Press N. The program is asked for the address of the
receive machine. Enter the six bytes written down separated by spaces and
press return. Enter a message to be sent to the receiving machine and
press enter.

 The screen will blank and ask you to press a key to send a packet or shift
Q to quit. Press any key. If you look at the receiving machine, you message
should be on the screen. On each of the screens, there should be a 1 in the
upper right hand corner. This indicates that one packet has been sent and
one packet has been received. You can continue to press any key to send
additional packets. Press SHIFT and Q when ready to quit.

 Master

 The master of the Parallel Lan System is the most important machine. It
can be likened to the server of a local area network. It must be powerful
and able to handle a flood of activity by the worker nodes and the
developer. As documented in the manual Using the Parallel Lan System, the
master should consists of

 * At least a 25-MHZ 386 IBM PC or Compatible.

 * 4 MB of RAM

 * 16-bit 32k buffer Ethernet card

 Anything above these specification will allow for better efficiency in the
system. Other than running the system software for the master, there is
nothing that can be done to the master.

Duties

 The duties of the master are as follows

 * Administer the MAIN tuple space of the PLS.

 * Receive and interpret Linda instructions from multiple processors.

 * Keep track of unanswered Linda instructions (IN,RD).

 Those are the only responsibilities of the master. However it is a larger
responsibility than it may appear.

Multiple Processor Communication

 When considering the concept of multiple processor
communication, image this situation. You are sitting in the middle of a ring
of sixteen people. All of these people are trying to hold a conversation with
you AT THE SAME TIME. The human mind simply cannot handle that much
information at the same time. Most people can't even keep track of a single
conversation. That is one of the jobs of the master.

 Things begin with the ethernet card receiving a packet. This packet is put
into some memory set aside for incoming packets. The master system

software periodically checks to see if there are any packets in the first
incoming buffer. If there are packets, it will take as many as there are and
partial processes them and put them into a secondary buffer. This step is
crucial. The first buffer is static. In other words, it is of a constant size. As
much information about this buffer as possible was defined when the master
program began executing. If it were to overflow, some packets would be
lost (the sender would send duplicates however. But at a lose of execution
time). After the packets are in the secondary buffer, the system software
will processed them fully one at a time as it has time. Processed packets
will end up in one of two places. Packets which represent the Linda
instructions OUT and EVAL windup in the TUPLE SPACE. Packets
representing IN, INP, RD, and RDP will end up in a request queue. The
master system software picks from the request queue when it tries to match
tuples.

 In addition to the above queues, the master also has internal data
structures that it uses to guarantee that no duplicates packets are
processed. We all know what its like to be told the same thing over and
over. The master doesn't like it either therefore it eliminates duplicates.
Also, the master must keep track of the order of packets from different
processors. Just like we try to say a persons first name before their last
name, the master must guarantee that a packet sent before another packet
arrives first.

 For more information on the about technical data about the system
software, refer to the document The Parallel Lan System -A Look Inside.

Different Masters

 There is a difference in performance between different masters. We are
going to take a look at how masters can influence the overall speed of a
parallel program. The masters used are

 * a 4.77-MHZ 8086 IBM PC Compatible, and

 * a 25-MHZ 80386 IBM PC Compatible.

 Each of masters was used in a comprehensive set of 40 tests using the
Linda mandelbrot program explain in a later chapter. The test documented
here was performed using from 1 to 16 workers (4.77 MHZ 8086 PC's using
8087 math coprocessors) each doing 4 columns per computation. The
following table shows the difference between the masters.

Cpus 8086 Master 80386 Master Speedup
1 642.52 577.91 11%

2 358.89 274.89 24%
4 210.80 141.65 33%
8 188.72 80.36 58%
16 ----.-- 88.87 -----

 The chart shows the total seconds for each test using the 8086 master and
the 80836 master. The far right column shows the speedup between the
two systems. There is a considerable speedup as we approach 8 workers.
There was no test performed for 16 workers using the 8086 master.

 Notice the increase in time between 8 and 16 workers. This example also
illustrates the idea that adding more workers does not necessarily decrease
execution time of a program. A faster master does indeed make a
considerable impact on the speed of the execution of the program.

Machine

 The faster the machine, the faster the tuple space can be searched for
needed tuples. The most work the master will perform is interpreting tuples
sent to it. The faster it can do this the better.

DOS

 Microsoft recently released DOS 5.0. This DOS has many memory saving
features that the system can benefit from. IF the master is equipped with 1
MB of memory or more, DOS can be loaded into high memory as well as
device drivers and TSR's. All of this can save precious lower memory.

 The master software uses lower memory (as well as extended) to hold
the tuple space. A system using DOS 3.3 or 4.01 will have approximately
300k of heap space available for the tuple space. Dos 5.0 increases this
amount to approximately 360k.

Extended Memory

 If we have 1 MB available we can take advantage of the features of DOS
5.0 Any memory over 1 MB can be configured as extended memory by
using an extended memory manager. The master software will take
advantage of any extended memory available.

 Using extended memory for some of the tuple space is expensive as far as
processing speed is considered. The software uses a system put into public
domain to manage extended memory. Unlike conventional memory below

640k, extended memory cannot be accessed directly. A system of segments
is created in extended memory. These segments are copied into
conventional memory to be
manipulated and then put back. The segments are 32k in size. This means
there is a 64k memory copy performed for each and every packet that must
be put into extended memory. Now simple memory management has been
put into place which will keep the most recently used extended memory
extent in conventional memory. However, to execute programs which has a
large amount of data, extended memory is essential. At Parallel Computer
Solutions, a 4 MB system has been used in all cases with no problem as far
as space requirements.

Network Cards

 Not all cards are created equal. We have 8-bit, 16-bit, and 32-bit cards
available for PCs. To the best of my knowledge, 32-bit cards are available
for EISA bus system only. Therefore, most PC's will use either the 8 or 16 bit
cards. If we have a 80286 or better machine, we will want to use 16-bit
cards. 16-bits ethernet cards have several advantages.

 The first is the addition of 8 data lines. More information can be
transferred on 16 lines than 8 lines. A second reason is buffer size. Most 8-
bit ethernet cards have an 8k buffer for incoming packets. For most
applications this is fine but the master will be receiving packets from many
different PCs at the same time. We want to have a large buffer available if
the master is busy searching tuple space or some other system function.
16-bit ethernet cards have either 32k or 64k buffers for incoming packets.

 You usually get what you pay for when buying a computer system. The
master is the most important component in the Parallel Lan System and
therefore it should be the best system available.

Master Installation

 Obtain a blank diskette to copy the master software from the system
diskette. To make the system easy to install, create a bootable diskette with
the appropriate memory managers, etc for you system. Copy the packet
driver for the ethernet card onto the new diskette. Copy the file
MASTER.EXE to the net diskette. Label this disk as bootable and containing
the master system software.

 Execute the master software on the appropriate machine by typing

 A:MASTER

 A message will appear telling how much extended memory is available
and used by the master system. Press return to get to the next screen. The
following should appear

(master screen - initial picture)

 This is the initial screen for the master. The master sits in a loop waiting
for a tuple to be sent to it. Under normal circumstances, the master does
not need any attention. The operation of the master can be disabled by
pressing any key. As activity starts on the system, the screen will change,
this screen

(master screen - 2 cpu picture)

 shows that 2 cpus are active on the system and the packets sent and
received from those cpus. In addition, the sizes of the heap and extended
memory is given.

 Worker

 The workers are an important part of the Parallel Lan System. The workers
do one thing: perform calculations. The least powerful machine available for
a worker is:

 * 4.77 Mhz 8088 IBM PC or Compatible

 * DOS 3.3

 * 640K RAM

 * 8-bit ethernet card

 Just as in the case of the master, the performance of the Parallel Lan
System can be determined by the power of the worker machines. Testing of
the Parallel Lan System was performed on both 4.77 Mhz 8088 workers and
20 Mhz 80386 workers. Both systems provided speedup simply because of
the parallel execution of the test program. But the 80386 workers gave
additional speed advantages by as much as 60/80%. The following four
charts show the times required to perform mandelbrot using 8088 workers
and 80386 workers. The master in the first two charts was an 8088
machine. In the second two charts, the master was an 80386 machine.

(charts)

 In an established LAN we do not have much choice in what type machine
is used as a worker. The charts should show you that processor power
certainly makes a difference in both the master and workers.

Worker Installation

 We must now install software on each of the worker machine. Follow the
previous directions for setting up a master diskette but instead of copying
master.exe we need to copy a worker program.

 Turbo Pascal is available in two different versions: 5.5 and 6.0. They are
different in code generation. Therefore, we have two different worker
pieces of software called worker5.exe and worker6.exe. If you are using
Turbo Pascal 5.5 then copy
worker5.exe to a:worker.exe and if you are using Turbo Pascal 6.0 then copy
worker6.exe to a:worker.exe.

 Insert the diskette into driver A: and type

 A:worker

 The screen will blank and you will be asked the address of the master. If
you did not write the address of the master down, you can look on the
screen of the machine it is executing on. In the upper left hand corner of
the screen is the ethernet address of this machine. On each of the worker
systems, enter the six bytes separated by spaces. Once the system has
digested the master address, it will attempt to establish communications
with the master.

 Recall that the purpose of the worker is to execute code given to it by the
developer system. The worker will get work from the master by sending a
tuple of the form

 in ('work');

to the master. All packets sent over the ethernet are given a specific number
in order to keep a sequence. the system software gives the number 2 to the
first packet sent out by any system. We can verify that a worker is
communicating with the master by the messages put on the master and
worker screens. A worker has communicated successfully if on the screen of
the master is a message IN - 2 for each of the workers.

 Since a packet has been sent to the master, the master has to
acknowledge the packet, therefore each of the workers should have a
message in the right most box with the number 2 next to it. If this is the
case, then this worker has been successful added to the system. If this is not
the case, then either the master's address was not correctly entered or the
address in not that of the master. The worker software halts when a key is
pressed. So if no message appears on the screen , press a key on the
worker machine and try again by executing the worker software again.

 Developer

 The developer is a machine on the system which runs and coordinates the
executing parallel program. It will begin a program by submitting any
number of worker processes. The responsibilities of the developer are

 * Submit jobs for worker processors

 * Coordinate the submitted jobs

 * Produce results

 The developer is the foreman for the Parallel Lan System. A programmer
will code a parallel program on the developer, compile it, and run it without
moving to different machines. One way to look at it is you are programming
a single PC which just happens to have any number of subprocessors
available to help speed up a particular program.

 Again it needs to be pointer out that if you are using Turbo Pascal 5.5, the
workers should be executing worker5.exe and if you are using Turbo Pascal
6.0, the workers should be executing worker6.exe.

 The Parallel Lan System developer software is setup to initially recognize
files with an extension of .PLS. Turbo Pascal and our system files can be set
up in such a way as to simplify use of the system. In the root directory of
you hard drive create a directory called PLS using the command

 mkdir pls

 Move into that directory with

 cd pls

 Insert the system software diskette into drive A: and copy the following
files into our new directory

 work*.tpu

 both*.tpu

 *.pls

 linda.exe

 *.doc

 Now back out of this directory with

 cd ..

 Using an editor change your autoexec.bat file to include the turbo
directory in the system path. If no PATH directive appears in you
autoexec.bat file, enter the following line

 path c:\tp - or whatever the turbo pascal directory name is

 After you have changed the file type

 autoexec

 This is make the change effective. Now change into your PLS directory
and type

 turbo linear.pls

Turbo's main screen will appear. We need to make sure the compiler settings
are set correctly before we do anything else. Press ALT and O, move to the
COMPILER and press return. Move the bar to FORCE FAR CALLS and change
the entry to YES. Check that the entry BOOLEAN EXPRESSIONS is set to
SHORT-CIRCUIT. Move to the first menu and select the SAVE OPTIONS entry
and press return. Save the new options.

 Now on the screen will be the parallel program for solving linear
equations. Try to compile this program by pressing F9. You should get an
error on the first Linda command IN. What we need to do is execute the
conversion program LINDA.EXE. Linda.exe is explained in the document,
Linda Conversion Program User Guide. To do this in a convenient manner,
press ALT and F. Move to the entry EXIT TO DOS and press return. This will
exit us to DOS but keep Turbo Pascal in memory. Run the conversion
program by typing

 linda linear

 The linda program will create a file called Linear.pas that is made up of
Turbo Pascal statements only. Type exit and press return. This will return us
back to Turbo Pascal. We are still working on the file Linear.PLS. Press ALT
and F and move the bar to PICK and press return. Pick a new file and enter
linear.pas. This will bring up the file linear.pas. Press F9 to compile the
program, it will compile successfully. If there had been an error, we would
have wanted to press ALT and F, move the bar to PICK and select linear.pls

to make any changes, run linda again, and select linear.pas. Although this
may seem a hassle, it is the only way to incorporate a preprocessor in the
Turbo environment. Future releases will not require this.

Compiler Directives

 During the development of the system, several things were learned about
how Turbo Pascal (TP) generates code. TP allows for several different
types of float point variable. Reals, double, extended and several other are
the chooses that we have.

 In most applications, real variables are good enough for our calculations.
TP will generate code for reals automatically. In order to generate code to
handle double or extended variables, the compiler directives {$N+,E+,F+}
are necessary.

 So what the problem. The problem comes about when there are constants
in your code. Such as

 a := 1.0;

The 1.0 is a constant as far as TP is concerned. When TP generates code for
normal reals, it appears that the constant value is stored in the code itself.
When double or extended reals are used, TP does not put the constant into
the code itself. The constant value is stored at the top of the procedure that
the constant appears in. The code

 procedure test;
 var a : extended;
 begin
 a := 1.0;
 end;

 TP generates the code.

 0000803F - 1.0
 55 - push bp
 89E5 - mov bp,sp
 B80A00 - mov ax, 000A
 9A7C02AF5C - call 5CAF:027C
 83EC0A - sub sp,000A
 CD3C99060000 - fld cs:dword ptr[0000]

 The mnemonic FLD loads the real constant into the 80x87 or emulator.

The constant is located at cs:dword ptr[0000] which when disassembled, is
the first line of this code segment. The main code has a call statement CALL
0004 which calls this
procedure code thus bypassing the real value.

 Now what is means to us is, we should always include the compiler
directive {$N+,E+,F+} in our program. It is not always needed obviously,
but it is safe to include it. If you write an application that uses reals, there
may be an error.

 The system code has been tested on machines with and without numerical
coprocessors. One test included some workers with coprocessors and some
without. The above compiler directive worked for both setups.

Units and System Code

 There are a considerable number of routines that are needed to perform
the operations of the Parallel Lan System. By
incorporating these routines into a single Turbo Pascal Unit, we are able to
successfully hide them from the developer.

 Turbo Pascal requires units to be included in a program by using the
command USES. Programs intended to execute on the PLS should start with
the code:

 Program

 {$N+,E+,F+}

 Uses work, both;

 There are two units for the PLS; work and both and should be in the
directory where the program being written is. By USEing this unit, we have
access to procedures and variables that we will use directly in the writing of
our parallel programs. Now in the working directory, there are two different
version of the work and both units. Work5 and both5 should be used when
using Turbo Pascal version 5.x and work6 and both6 should be used when
using Turbo Pascal 6.0.

Startup Procedure

 We have developed a parallel environment which operates in coordination
with Turbo Pascal. Because of this, there are several problems that must be
dealt with directly. To solve several problems, a parallel program must

include, what we call, a startup procedure. The purpose of this procedure is
two-fold. First is to initialize the system. The second procedure of the
startup procedure is to border procedure which are destined to be sent to
worker processes.

 Turbo Pascal creates, as far as I can tell, procedures by first coding all real
constants and placing them into the code. So if a statement in the language
like

 a := 1.0;

Turbo Pascal will encode the 1.0 into the code such as

 0000 3F55 (or something like this)

 After the constants, code is generated to set up the stack for any formal or
local variables.

 push bp
 mov bp,sp
 mov ax, ---- (the number of bytes required for variables)
call ----

 There one or two calls to Turbo Pascal procedures. It is my guess that the
stack is checked for overflow as well as other housekeeping activities
associated with the stack. The code to perform the function so the
procedure are generated next. After this code, the stack is returned to its
original state. The last code generated is a return instruction. The 80x86
family of microprocessors have several different return opcodes. These
return opcodes are for near, far, and interrupt routines. Our system
requires all procedure and function calls to be generated as far. The reason
for this is so Turbo Pascal will always generate a RETF instruction which us
$CB hex. By always generating this particular instruction, the system
software can make a fairly good guess at where a procedure ends and
another begins. This, if we wanted to generate code for the procedures.

 procedure startup

 begin
 end;

 procedure tosend;

 begin
 end;

 The code generated would look something like

 (procedure startup)

 $55 push bp
 mov sp,bp
 mov ax,----
 call

 .
 .
 .

 $CB retf

 (procedure tosend)
 $55 push bp
 mov sp,bp
 mov ax,----
 call

 .
 .
 .

 $CB retf

 If our code was going to send the procedure tosend to a worker node, we
would grab the starting location of the procedure, say 0030 hex, by using
the @ operator of Turbo Pascal. The system code backtracks until it finds a
$CB value. What we are doing is looking for any real constants. The
memory from the start of a procedure back to the next procedure's end $CB
is copied to the end of the code we are sending to the workers.

 Now why the startup procedure. If we did not have a procedure coded
before the procedure we are sending to the nodes, the system could search
for a long time before another $CB is encountered. By incorporating the
startup procedure, we are guarantee to find a $CB. The turbo debugger
invaluable when trying to determine exactly what Turbo Pascal does during
code generation.

 The startup procedure should be included in the developer code right after
the compiler directives.

 Program

 {$N+,E+,F+}

 Procedure startup;

 begin

 end;

 Now that we have the basics of the startup procedure, we need to put
some code into it. The first two lines of the procedure are

 exitsave := exitproc;
 exitproc := @myexit;

These lines of code link our exit procedure into the system exit procedure
which is part of any Turbo Pascal program. In the event of a run-time error,
our exit routine will do some internal memory deallocation and other system
functions that allow the system to fail gracefully.
 The next size lines of code identify which machine is the master. Ethernet
addresses are codes as six bytes which as 00 00 C0 05 86 24 hex. Find out
the address of the ethernet card the master system software will execute on
using the pktinfo program included with the system. The lines of code
necessary to identify the master to the developer program looks like

 master[x] := $yy;

There should be six lines identical to the above with x ranging from 1 to 6.
The $ operator identifies the following two
characters are hexidecimal.

 The last line of code in the startup procedure is

 init_system;

The system initialization code has been put into this single call in order to
keep the startup procedure as simple as possible.

Procedure Declarations

 The power of the Parallel Lan System lies in the ability to send procedures
to worker nodes. The system is not limited to just sending of a single
procedure. Any number of procedures can be sent to workers. There are
several rules that have to be followed when designing procedure which will

be sent to workers.

Global Variables

 When Turbo Pascal compiles a program, space is set aside in a separate
data segment in the PC's memory for variables. The memory location of a
specific variable is recorded in the compiled code. If a global variable is
reference in a procedure sent to a worker, the value obtained when this
variable is used will not be the value that we want. The contents of the
memory location referenced will be undetermined because the worker was
not aware that of that particular global variable.

 Worse yet is the assignment of a global variable. The value assigned to
the variable will be placed in the workers memory somewhere. It is possible
that the assignment will cause the worker to fail.

 Global variables should be passed by the developer to worker machine
through the Linda instructions and the tuple space.

Readln/Writeln

 Procedures sent to workers cannot have readln or writeln statements in
them. The reason for this is Turbo Pascal treats the screen and keyboard as
files. If used, a FILE NOT OPENED error will appear and the worker will fail.

Formal Parameters

 There can not be formal parameters in the procedures sent to workers.
Because we are using a version of the Linda coordination language, there is
no need for formal parameters. The function of formal parameters are
performed by Linda instructions.

Nesting Procedures

 Turbo Pascal does not follow the source code exactly when generating
code. One such case is nesting procedures. Logic would dictate that the
code generated would model that of the source, where by the procedure
code generated by the compiler would include procedure nesting. Turbo
Pascal does not do this, nor should it. Nested procedures are coded as
single procedures and a call in made to them as needed. This however
causes us some problems. When our system generates tuples to send to

workers, it is performed at runtime, therefore we do not have access to the
symbol table. We cannot determine which procedure to send and which not
to. The end result is we are unable to handle nested procedures with this
release of the system.

Multiple Procedures

 There are programs which are prone to decomposition requiring multiple
procedures. The system is setup such that procedure sent to workers can
coexist with normal procedures. The developer can use normal procedures
during the execution of a program. When a program has more than just a
single procedure to be sent to the worker nodes, order is not important. The
system will locate the appropriate procedure when asked for.

 Say we have a program which requires two different procedure to be sent
to workers. Can the developer program or programmer determine which
worker will get which procedure? No, we can not determine in what order
the workers will get the procedures. If it is important, a system of
semaphores could be used.

CAUTION!

 There is one important note that must be made about the code that
can appear in a worker procedure. Turbo Pascal performs smart linking when
ever a program is compiled. In other words, if you use the sqrt library
function, it is extracted from the system unit and placed in your code. The
entire system unit is not compiled with your code. Therefore, STATEMENTS
FROM THE SYSTEM UNIT CANNOT BE USED IN YOUR WORKER PROCEDURES!
The reason for this is the worker software cannot effectively be compiled
with all of the functions included in the system unit. Once again, this is a
limitation brought about from building this system on top of the conventions
of a pre-existing compiler.

Developer Program Design

 Parallel programming is no easy nor is it straightforward. In this section, I
would like to give a few points on understanding the task at hand. This is by
no means a tutorial on parallel programming.

 All parallel system are different. Then again so are all programming
languages. Bit as computer scientists, we are required to be able to learn
new programming languages easily. Learning to program the Parallel Lan
System can be an

uncomplicated task if the problem we want to solve is correctly
decomposed.

 The Parallel Lan System is designed as a distributed structure machine.
The information or data structures we develop for our problem are kept on a
single machine, the master. In order to access this information, a request is
sent to the master by way of a tuple. There can be potentially a large
amount of information passed among the different systems. The designer
of a parallel program on the PLS must keep this i mind. Take for instance on
the of the example programs described in the main documentation.
Mandelbrot is typically designed as a sequential program which executes on
a single pixel at a time. When writing Mandelbrot for a parallel machine,
several options are available. Do we want each processor to execute the
algorithm on a single pixel before returning result, a column, a row , or
multiple of each. The main documentation describe the result . But suffice
it to say, executing on a single pixel at a time will achieve parallelism
because some number of processors will be calculating a pixel value at any
given moment. Bit is not optimal. There is too much communication
between processors. We can achieve better results with a particular number
of processors by increasing to a column or more.

 This brings up another point, there are times when adding processors to
the system will result in a degradation of the system as a whole.

Tuning

 There will almost always be some parameters in a parallel program that
will judge the ultimate speed of the program on the system. It must be kept
in mind that the key to parallel
programming is to get an initial program up and running. After the program
is running, test it and compare to other platforms.

 A sequence program executing on a single processor

 A one - worker Parallel Lan System

 A two - worker Parallel Lan System

 A four - worker Parallel Lan System

 An eight - worker Parallel Lan System

 Graph the results (using execution time) on a chart. This will help
illustrate the speed up achieved from going to parallel execution. Do not be
surprised if several of the tests are slower than a sequential program. At

some point, adding more processor should achieve results faster than the
sequential program. A rule of thumb can be used in general. If after
executing the algorithm on a four processor system the results are not
achieved faster than a sequential program, something is wrong with the
design of the program. But before submitting to a redesign, check the
establish or try to establish tunable parameters. There are always some
variables or aspects of the algorithm used in the program which can be
tuned to achieve faster results.

 The pixels was a tunable parameter in the Mandelbrot program. In a
fiance program it could be the number of variables used in a regression or
the number of data points examined. In the linear algebra program shown
in the main documentation, its the number of columns calculated by each
processor.

Debugging

 A parallel program can sometimes be more of a challenge than writing the
parallel program itself. As of this release there are no debugging facilities,
but the source code is provided so you can add any support you feel
necessary. My only remark on this subject is to run your program on a one
worker system and count out pieces of the code until you have identified
where the problem occurs. Then run on a two worker system and do the
same thing. Just remember the you have many different tasks executing at
the same time. A key to debugging a parallel program is to understand the
relationship between these different tasks.

Main

 In the main section of the developer program, the first statement should
be a call to start_up. Your code for the actual program goes next. After the
code, the statement close_system ends the main section.

 begin

 start_up;

 { user code }

 close_system;

 end.
Skeleton Code

 The following is a skeleton of the necessary code for a developer program.
It should reproduced and placed in a .PLS file for easy access. The easiest
way for keeping the code separate is to name this code skel.pls and perform
a copy when developing a new application.

program ------;

{$N+,E+,F+}

uses both, work; { remember: append 5 or 6 to the end of work and both
depending on the version of tp }

procedure start_up;

begin

 exitsave := exitproc;
 exitproc := @myexit;

 master[1] := $--;
 master[2] := $--;
 master[3] := $--;
 master[4] := $--;
 master[5] := $--;
 master[6] := $--;

 init_system;

end;

{ user procedures }

begin

 start_up;

{ user code }

 close_system;

end.

What the Developer Doesn't Show

 The developer is an independent program. You will not see the same

displays as the master and worker have. Therefore, there should be some
activity on the developers screen. The programmer will have to provide this
activity. The example programs are all graphical in nature therefore it is
quite easy to see that everything is going normally. The programmer will
want some kind of indication from the developer as to the state of the
system as far as the developer is concerned.

RELAX!

 The most important thing to remember when developing parallel programs
is to relax. Parallel programming takes time and patience. Parallel
programs have to be planned, in my opinion, much more than sequential
programs. The results for this is that in a sequential program, one
instruction is going to follow another. Even in the case of decisions and
loops. There is no question about it. It can be traced and reproduced many
times. (Unless there is a subtle bug in the program that occurs only every
three thousand iterations). In a parallel program, there is absolutely no
guarantee as to the order that instructions will be executed by the different
machine. Even if the workers are executing the same piece of code.

 I strongly recommend coding the programs presented later and running
them. Get comfortable with the system and then
experiment. You can always reset the machines and start the system again
if something really messes up.

 PCS-Linda

 In the above section on LINDA, we touched on the different instructions
and either use in coordinating parallel programs. Now we want to look at
PCS-Linda. PCS-Linda is the dialetic of Linda that the Parallel Lan System is
programmed with; along with Turbo Pascal. In order to get Linda is execute
using a pre-existing compiler, several requirements had to be made as far as
using Linda was concerned. This section will discuss those requirements.

Linda Conversion Program

 Turbo Pascal will not recognize PCS-Linda. Try it once. You will get an error
message on any of the six instructions. The Linda Conversion Program (LCP
) is a preprocessor for the PLS and PCS-Linda. After you have coded a
parallel program using Turbo Pascal and PCSL, you must give the program a
name ending with the extension '.PLS'. Once this file is created, you can run
the LCP to convert your program. LCP will perform some magic and produce
a file with the same name ending with '.PAS'. This file can now be
successfully compiled with Turbo Pascal.

 The LCP will produce code that Turbo Pascal can recognize for each of the
linda commands. If there is an error in the Turbo Pascal code, verify that all
variable have been declared and things like this. Always remember to make
changes to the '.PLS' file and not the '.PAS' file. For more information about
LCP, refer to the document Linda Conversion Program.

Tuple Elements

 Tuples in PCS-Linda can consist of zero to six elements. The elements can
be one of four different types

 * Actuals

 * Formals

 * Data

 * Null

 Actuals and formal elements will be discussed next. The last two types,
the programmer and user have no control over. When an EVAL instruction is
executed, a procedure is sent to the master or worker. This procedure is

considered to be a data element. In reality it is an actual but there are
special needs that must be met when searching and transferring procedure
to and from the different machines. The data type allows for cleaner code.
The null type is used in every tuple where there is less than six elements.
Elements not used in a tuple are given the type null. The null type uses no
memory therefore it is a convenient form of termination for these empty
elements.

Actuals - Integer/Real

 Using a pre-existing compiler caused several different things to happen in
the development of the Parallel Lan System and its associated Linda
language. This can be seen when using actuals and formals in the tuples.

Integers

 Turbo Pascal has several different types of integers; integer, long, word,
byte. Each of these can be used in a tuple but there is a rule to their use. If
an integer is to be sent in a tuple, it can be represented in two ways. The
first is to put the integer into the tuple

 ('info', 1, 5, 8)

 The 1, 5 and 8 will be interpreted as integer and stored accordingly. The
integer used in the two-complement two-byte integer. Therefore the tuple

 ('info', 1234567)

would case a compile error when the final code was compiled. This number
is too large for an integer stored in two bytes. The same is true if an single
byte was to be sent. It would be stored in two-bytes instead of one. In
order to sent the above number, we could use the tuple

 bigint : long;

 bigint := 1234567;

 ('info', &bigint);

 This tuple would effectively send the large number to the master. We
would do the same for a byte

 smallint : byte;

 smallint := $32;

 ('info', &smallint);

 Remember that the tuple sent to match either of the above tuples would
also have to have the receiving integer declared as either a long or a byte.

REALS

 The same situation as above occurs with reals as well. When a real is put
into a tuple

 ('info', 1.234, 1.4E+3)

 The real is evaluated as a 6-byte real number. This is an acceptable real
number for most applications but in the case of more complex mathematics,
a large real may be necessary. Turbo Pascal support reals as either real,
single, double, extended, and comp. Each of these tpus can be used just as
we did for integers. To send the real number 1.234e+1023 we would use the
tuple

 bigreal : extended;

 bigreal := 1.234e+1023;

 ('info', &bigreal);

 Again, the variable to receive this real number would have to declared as
an extended as well.

Formals

 Formals must match the types they are to receive. Because we are
programming both the code the worker will receive and the code the
developer will execute, we can easily match the types. However, it may
happen that in a case where we were using reals and the accuracy was not
enough so we change to extended reals, we missed a declaration. The
system will not match the tuple because a standard real is 6 bytes and an
extended is 10 bytes in length.

INP & RDP

 The pre-existing compiler strikes again. The INP and RDP instruction
treated as function normally. They will returned either true or false if a tuple
was matched by the master. However, we were unable to get the
functionality of these two instructions exactly. In PCS-Linda the RDp and INP
instructions must be assigned to a boolean variable such as

 ok := RDP ('info', bigreal);

 If a tuple was matched, bigreal will contain the real value sent with the
tuple and ok will be set to true. If a null tuple was sent by the master, ok
will be set to false, and bigreal will not be changed. If we were to use the
RDP (INP can be
substituted wherever RDP is used) to control a loop we would do the
following

 ok := rdp ('info', bigreal);
 counter := 1;
 while not ok do
 begin
 inc (counter);
 ok := rdp ('info', bigreal);
 end;

 This loop would count the number of times the RDP instruction was used
before a successful tuple match was found. In Original Linda from Scientific
Computing Associates, Inc. this loop would appear as

 counter := 1;
 while not rdp ('info', bigreal) do;
 inc (counter);

 This is not a big change but it is one that should be kept in mind when
using the RDP and INP instructions.

EVAL

 The EVAL instructions is used to send a procedure to be executed by a
worker. PCS-Linda only allows one element in the tuple used for the EVAL
instruction

 * The first element must be &procedure name

 The name of the tuple must be 'work'. The worker system software has
been precompiled to look for a tuple of this name with the above elements.
Because duplicate elements are allowed in tuple space, the name 'work' will
not cause a problem when sending more than a single procedure to be
executed by workers. Thus the tuples

 eval ('work', &compute);

 eval ('work', &result);

will not conflict with each other.

Tuple Size

 The tuple size of the present Parallel Lan System is 16000 bytes. This will
allow a large amount of data to be sent between machine per instruction. If
this is not acceptable for your situation, you receive garbage when trying to
execute your parallel program, (the workers will probably get confused as
your code executes), call us and we can increase your systems tuple size.

What Does OUT (); Produce

 Lastly, we would like to show what the instruction

 var

 start_col : integer;
 results : array[1..200] of integer;

 out ('col', &start_col, &results);

produces when put through the Linda Conversion Program.

begin
make_tuple (3, 'c', 'o', 'l', ' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ', @start_col, sizeof
(start_col), yes,
@results, sizeof (results), yes,
nil,0,null,
nil,0,null,

nil,0,null,
nil,0,null
);
send_tuple (out);
end;

 All of the above is required for a single PCS-Linda
instruction. It is beyond the scope of this guide to detail what is being done
here. For more information about the technical nature of the Parallel Lan
System consult the paper - Parallel Lan System - A Course In Overcoming.

 An Example

 Let's start using the things we have learned by formulating an example
exercise. We want to have multiple processors find the sum of all the
integers between 1 and 20. We want to write the program in PCS-Linda and
Turbo Pascal. Because of the nature of the PLS, if your system only has a
single worker, the code will still execute correctly.

 We want our developer to put the numbers 1 through 20 into tuple space
and wait for a sum to be computed. the first thing we should consider is
what our workers are going to do.

 Our workers are suppose to take a number and add it to a sum. The
workers are going to get this number and the sum from tuple space. So let's
get these two things

 in ('num', a);
 in ('sum', sum);

 Both a and sum will be declared as integers for this problem. Once the
worker has these two things, it will add the number in a to the running sum.

 sum := sum + a;

 After which, the worker has to put the new sum back in tuple space.

 out ('sum', &sum);

 The worker is finished. Several questions should come to mind. First of
all, why did we IN both a and sum, why not use RD instead.

 The first thing that we want to happen is a worker to get the sum, which
should be zero since we are starting the addition sequence. The worker
should then get one of the numbers to add to the current sum. The first
worker will request the current 'sum' tuple and a 'num' tuple. The worker
will add the number to the sum and get a value of 1 for sum. This new sum
is placed back in tuple space for the next worker. If we did not remove the
'sum' and 'num' tuple, we would have a tuple space that was filled with
multiple 'sum' tuples and duplicate 'num' tuples. When the next worker
requests a 'sum' and a 'num' tuple, it may get the 'sum' tuple that has a
value of 0 and not the one with the value of 1.

 The duty of the developer program was to put the work
procedure and necessary values in tuple space. The code will look like

 out ('sum', 0);
 for i := 1 to 20 do
 begin
 eval ('work', &worker);
 out ('num', &i);
 end;

 The developer will end by INing the ending sum and printing the result.

 in ('sum', &sum);

The program looks like this:

 program add;
 {$N+,E+,F+}
 uses work, both;

 var i, sum : integer;

 procedure startup;
 begin
 exitsave := exitproc;
 exitproc := @myexit;

 master[1] := $--;
 master[2] := $--;
 master[3] := $--;
 master[4] := $--;
 master[5] := $--;
 master[6] := $--;

 init_system;
 end;

 procedure worker;
 var a, sum : integer;
 begin
 in ('num' , a);
 in ('sum', sum);

 sum := sum + num;

 out ('sum', &sum);
 end;

 begin
 startup;

 out ('sum', 0);

 for i := 1 to 20 do
 begin
 eval ('work', &worker);
 out ('num', &i);
 end;

 in ('sum', sum);
 writeln (sum);

 close_system;
 end;

Analysis

 Now look at this code carefully. As soon as the worker receive their
procedures to execute, they try to IN two tuples named 'num' and 'sum'.
But what does the developer do, it immediately tries to IN the 'sum' tuple.
Now we cannot predict who will get the 'sum' tuple first but the developer is
in line to get it. We want the developer to IN the 'sum' tuple after all tuples
have added the values to sum not while they are currently adding the values.

 We must put something into the code which will delay the developer from
getting the 'sum' tuple until after all workers have added all values to sum.
We could put a delay, time wise, into the developer code. Delays are
dangerous though. Too many parameters go into the circumstances
surrounding delays. We need a tuple that can be increment when a value is
added to sum; like a loop control variable. We can do this fairly easily in
PCS-Linda. Let's define a tuple called 'count'

 ('count', count);

 Before any values are added to sum, count should be set to zero and
placed into the tuple space.

 out ('count', 0);

 The worker code must include instructions to read the 'count' tuple and
increment it when a value is added to sum.

 in ('count', count);

 inc (count);
 out ('count, &count);

 The most important part is up to the developer. We do not want to read
the final 'sum' tuple until after all values have been added to sum. We have
two instructions that can be used; either IN or RD. If we use RD it will leave
the 'count' tuple in the tuple space. So let's use IN. But what do we want to
IN. We want to read the final count of 20.

 in ('count', 20);

 This IN instructions will send a tuple to be matched to the master. Nothing
will happen in the developer until a match is made with the tuple 'count'
having a value of 20.

Final Code

 program add;
 {$N+,E+,F+}
 uses work, both;

 var i, sum, count : integer;

 procedure startup;
 begin
 exitsave := exitproc;
 exitproc := @myexit;

 master[1] := $--;
 master[2] := $--;
 master[3] := $--;
 master[4] := $--;
 master[5] := $--;
 master[6] := $--;

 init_system;
 end;

 procedure worker;
 var a, sum : integer;
 begin
 in ('num' , a);
 in ('sum', sum);

 sum := sum + num;

 out ('sum', &sum);

 in ('count', count);
 inc (count);
 out ('count' , &count);

 end;

 begin
 startup;

 out ('sum', 0);
 out ('count', 0);

 for i := 1 to 20 do
 begin
 eval ('work', &worker);
 out ('num', &i);
 end;

 in ('count', 20);

 in ('sum', sum);
 writeln (sum);

 close_system;
 end;

 Mandelbrot

 Mathematicians are able to generate wonderful things with numbers. One
particular thing created from numbers are pictures. The mandelbrot complex
number set is a set of numbers that when put through a particular set of
equations generates a picture. This manual is not the place for a detailed
description of the mandelbrot calculations. Books on fractals will typically
have a detailed look at mandelbrot numbers. We will describe as much as
needed for the calculations and the parallel program we will write.

Graphics Screen

 In order to plot a picture on a graphics screen, we have to create a
relationship between each of the pixels on the screen and a particular
complex number. For the mandelbrot program we present, we are going to
concentrate on a 320 x 200 portion of the VGA graphics screen available on
IBM PCs or compatible.

 Since we are going to be using complex number is the
calculations, we need to define what a complex number is. A complex
number has both a real and an imaginary part for each number. There will
always be two number for every complex number. Turbo Pascal does not
have a complex number type. Using the TYPE feature of Pascal, we can
create a complex number type

 type
 complex = record
 realp,
 imag : extended;
 end;

The nature of the calculations suggests that we use extended real units in
order to achieve the best possible accuracy.

For the mandelbrot calculations, a corner value is selected which acts as a
reference point for the calculations

 bcorner : complex;

This corner represented the upper left hand corner. For the standard
mandelbrot picture, bcorner is given the value

 bcorner.realp := -2.0;

 bcorner.imag := -1.25;

In addition to the corner, we must know the lengths of the sides of the
picture both width and height. The value typically used for both the width
and height is 2.50. Notice that all of these values can be changed to get
different pictures of the mandelbrot set.

The last values needed for the calculations are called gap values. The
calculations are such that the precision of the numbers can be changed for
different screen resolutions. The calculations use two different gap values,
one for the width of the graphics screen and one for the height.

 gap1 : extended; {width}
 gap2 : extended; {height}

Because all of the calculations will use the same gap values, they can be
predefined. The gap values are calculated by taking the length of each side
(2.50) and divide it by the number of pixels in each dimension. Therefore
we have the values

 gap1 := 2.50 / 320;
 gap2 := 2.50 / 200;

What these gaps say is there is 2.50/320 space between pixels on the
graphics screen being used to display the mandelbrot number set. When
higher resolution screens are used, the gap gets smaller and smaller thus
enhancing the resolution of the picture.

Sequential Program

 We have the basic values for the mandelbrot picture we wish to procedure.
The only thing left is to do the actual calculations. The calculation that must
be done for each pixel is

 z := z2 + bcorner;

 When the size of z grows to be greater than 4.0, we can stop the
calculations. Mandelbrot numbers are characterized by not approaching 4.0.
Therefore, these number could be put through the above equation many
times. This suggests that we need some sort of variable to control the total
number of times we do the
calculation. A good control value would be 50. If a value is put through the
calculation 50 times and the size is less than 4.0, the number belongs to the
mandelbrot set. Values in the mandelbrot set
are colored black in our picture. Values that reach 4.0 before 50 are colored

different colors.

 The actual calculation procedure will appear this way

function calculate (col, row, bcorner, ncomplex) : integer;

begin
 size := 0.0;
 result := 0;
 original.realp := ncomplex.realp;
 original.imag := original.imag;

 while (results < 50) and (size < 4.0) do
 begin
 original.realp := sqr(original.realp) - sqr (original.imag

) + ncomplex.realp
 original.imag := 2*original.realp*original.imag +

ncomplex.imag;
 size := sqr (original.realp) + sqr (original.imag); inc (result);
 end;
 calculate := result;

end;

 This function is performed for each pixel in the screen. In a 320 x 200
graphic screen there are 64000 calls to this function. In a large graphics
screen such as 1024 x 768, there would be 786,432 calls to the function.

 One parameter in the equation not yet examined is ncomplex. Ncomplex
is a complex number which represents the actual pixel on the graphics
screen. Ncomplex is calculated by adding the distance the pixel is from the
corner of the screen

 ncomplex.realp := current_column_pixel * gap1 +
bcorner.realp;

ncomplex.imag := current_row_pixel * gap2 +
bcorner.imag;

 So each pixel starts at the bcorner and adds the number of gaps in each
direction the pixel is from the upper left corner, thus multiplication by the
gaps.

The entire sequential program appears as

program mandel;

{$N+,E+,F+} (* use 8087 if present or emulate if not *)

uses dos, crt , graph;

type

 complex = record
 realp : extended;
 imag : extended;
 end;

var

 bcorner,
 ncomplex : complex;
 ccol,
 crow,
 row,
 column,
 result : integer;
 gap1,
 gap2,
 side1,
 side2 : extended;

procedure get_coordinates;

begin

 clrscr;
 write ('Enter the real part of the lower left corner (-2.0) :'); readln
(bcorner.realp);
 write ('Enter the imaginary part of the lower left corner (-1.25) :'); readln
(bcorner.imag);
 write ('Enter the length of real edge (2.50) :');
 readln (side1);
 write ('Enter the length of imaginary edge (2.50) :'); readln (side2);
 write ('Enter the pixels length of a row (320) :');
 readln (row);
 write ('Enter the pixels length of a column (200) :'); readln (column);

end;

procedure compute_stuff;

begin

 gap1 := side1 / row;
 gap2 := side2 / column;

end;

procedure prepare_screen;

var

 graphdriver,
 graphmode : integer;

begin
 graphdriver := vga;
 graphmode := vgahi;
 initgraph (graphdriver , graphmode , 'c:\tp');

end;

procedure plot (crow , ccol , result : integer);

var
 color : word;

begin

 color := 1;

 if result < 2 then color := 1;
 if result > 2 then color := 9;
 if result > 4 then color := 2;
 if result > 6 then color := 10;
 if result > 8 then color := 4;
 if result > 10 then color := 12;
 if result > 12 then color := 5;
 if result > 14 then color := 13;
 if result > 16 then color := 8;
 if result > 18 then color := 7;
 if result > 20 then color := 0;
 putpixel (ccol , crow , color);

end;

procedure get_complex;

begin

 ncomplex.realp := ccol * gap1 + bcorner.realp;
 ncomplex.imag := crow * gap2 + bcorner.imag;

end;

procedure calculate_mandel;

var

 original : complex;
 size : extended;

begin

 result := 0;
 original.realp := 0.0;
 original.imag := 0.0;

 while (result <= 21) and (size < 4.0) do
 begin
 original.realp := original.realp*original.realp -

orginal.imag*original.imag + ncomplex.realp;
 original.imag := 2 * (original.realp * original.imag) +

ncomplex.imag;
size := original.realp * original.realp + original.imag *
original.imag;

 inc (result);
 end;

end;

begin

 get_coordinates;
 prepare_screen;
 compute_stuff;
 for ccol := 1 to row do
 for crow := 1 to column do
 begin
 get_complex (crow , ccol , gap1 , ncomplex , bcorner);
calculate_mandel (ncomplex , result);
 plot (crow , ccol , result);
 end;

end.

 This program can be compiled using Turbo Pascal 5.5 or 6.0 and executed
to demonstrate the picture that will be produced. The row and column
entries can be increased to 640 by 480 if desired.

Parallel Programming Methods

 The mandelbrot program represents a large number of tasks which
perform the same operations on a large set of data. Each and every pixel in
the graphics screen has to be calculation on using the calculate function
presented above. There is no way around it. Thus if we have two processor
available for work, we can be doing two pixels at an given moment instead of
just one. Just think, if we had 64000 processors, all pixels would be
calculated at the same time. Think about the speed up.

 Our job is to write a parallel program using PCS-Linda and Turbo Pascal
that will perform the mandelbrot program using any given number of
processors.

Developer

 The easiest way to approach this problem is to first consider the job or
duties of the developer. After we have determined the job of the developer,
we can look at the code the worker will execute. Recall from above that the
calculations for each pixel all rely on a set of simple calculations which were
performed only once. These include

 number of pixels in each column
 number of pixels in each row
 length of column
 length of row
 gap value for column
 gap value for row
 corner value
 column to compute
 number of columns to compute
In addition, the graphics screen of the system must also be initialized.

Columns

 We must ask a question about how to distribute the work to the workers.
The sequential program computed pixels one at a time. Each pixel is then

plotted on the screen. We could allow each worker to only compute one
pixel at a time. Because of the nature of the Parallel Lan System, there
would be some communication overhead for each pixel. In reality it might
take longer for a number of processors to compute the screen than it would
for a single processor if we only allow each worker to compute one pixel.

 A solution to this problem may be to allow each worker to compute an
entire column of pixels. This would significantly cut down on the
communication because there would only be one exchange for every 200
pixels if our example problem. This is a much better solution. By allowing
each worker to computer a column of pixels, we can introduce another
value that will tell each worker how many columns to compute. We might
run tests to determine if each worker should have one column, two, four, or
more between
communication calls.

Results

 The developer is responsible for setting up the calculations as well as
receiving the results. As each worker finishes its column or columns, it will
have to put the results into the tuple space for the developer to access.
Once the developer has a set of results, it can pass to them to a procedure to
be plotted. After 320 result packets have been received, the developer can
perform any housecleaning necessary and quit execution.

The code for the developer looks like this

procedure plot (col : integer; results : resu);

var i,j : integer;
 color : word;

begin

for j := 0 to num_col-1 do
 for i := 1 to 200 do
 begin
 if results[i+j*200] < 20 then color := 1;
 if results[i+j*200] > 20 then color := 9;
 if results[i+j*200] > 40 then color := 2;
 if results[i+j*200] > 60 then color := 10;
 if results[i+j*200] > 80 then color := 4;
 if results[i+j*200] > 100 then color := 12;
 if results[i+j*200] > 120 then color := 5;

 if results[i+j*200] > 140 then color := 13;
 if results[i+j*200] > 160 then color := 8;
 if results[i+j*200] > 180 then color := 7;
 if results[i+j*200] > 200 then color := 0;

 putpixel (col+j , i, color);
 end;
end;

begin

 start_up;

 graphdriver := vga;
 graphmode := vgahi;
 initgraph (graphdriver, graphmode, 'a:');

 gap1 := 2.50 / 320;
 gap2 := 2.50 / 200;
 bcorner.realp := -2.0;
 bcorner.imag := -1.25;

 cur_col := 1;
 tot_col := 320;
 pix_col := 200;
 num_col := 1;

 for i := 1 to num_proc do
 begin
 eval ('work', &adder);
 out ('stuff', &gap1, &gap2, &bcorner);
 end;

 out ('screen', &cur_col, &tot_col, &pix_col, &num_col);
 for i := 1 to tot_col div num_col do
 begin
 in ('col', start_col, results);
 plot (start_col, results);
 end;

 readln;

 { system_shutdown }
 close_system

end.

Analysis

 The developer starts by calling the startup procedure for initialization of
the network. After the network is setup, the screen must be changed to
graphics mode.

 graphdriver := vga;
 graphmode := vgahi;
 initgraph (graphdriver, graphmode, 'a:');

 These Turbo Pascal commands instruct the graphic card in the PC to switch
to VGA mode. The Turbo Pascal BGI file for VGA must be on the drive
specified in the initgraph statement.

 The developer proceeds to establish the constants for the program. Gap1,
gap2, and bcorner are the same as in the
sequential program.

 gap1 := 2.50 / 320;
 gap2 := 2.50 / 200;
 bcorner.realp := -2.0;
 bcorner.imag := -1.25;

 The next four statements set up the working environment for the workers.

 cur_col := 1;
 tot_col := 320;
 pix_col := 200;
 num_col := 1;

 Cur_col is the number of the next column that needs to be computed.
Tot_col is the total number of columns that are to be computed. Pix_col is
the total number of pixels in each column. Num_col is the step value or the
number of columns each worker is suppose to compute. These values will
all be shared by the different workers in the system.

 Once all of the values are computed, the developer is ready to put the
work and initialization values in tuple space for the workers to pick up.

 for i := 1 to num_proc do
 begin

 eval ('work', &adder); out ('stuff',
&gap1, &gap2, &bcorner); end;

 Num_proc is the total number of processor on the system or the number of
processors to be utilized in the calculations. The common values for the
workers is the next tuple put into tuple space.

 out ('screen', &cur_col, &tot_col, &pix_col, &num_col);

 The developer is now free to concentrate on its own activities mainly
receiving and plotting the results.

 for i := 1 to tot_col DIV num_col do
 begin

 in ('col', start_col, results);
 plot (start_col, results);
 end;

 Num_col is used to divide the total number of 'col' tuples to receive based
on the number of columns each worker will calculate.

 The last thing the developer needs to do is clean up the tuple space and
shutdown the system

 in ('screen', cur_col, tot_col, pix_col, num_col); close_system.

Worker

 Next we must determine what the duty of the worker is. The worker must
IN the common data from tuple space. This data would include the gaps
and corner value. The worker would then IN the screen information. It is
this information that will determine whether or not a column needs to be
computed. If the worker IN the tuple and the cur_col to compute is greater
than the tot_col value, then the system has successfully computed all
columns. The worker ca quit executing this procedure. If the cur_col is not
greater than the tot_col value, it will have to determine how many columns
to compute and compute them. The code for the worker looks like this

procedure adder;

type

 complex = record
 realp,

 imag : double;
 end;

var

 plen : integer;
 pkt : pointer;
 a_tuple : tuple_pointer;

 gap1,gap2,
 a,b,c,
 size : double;
 bcorner,
 ncomplex,
 original : complex;
 cur_col,
 tot_col,
 pix_col,
 num_col,
 cc,
 row,
 r,
 indexc,
 result,
 start_col,
 end_col : integer;
 results : array[1..200*num_col] of integer;
 finished : boolean;

begin

 in ('stuff', gap1, gap2, bcorner);

 in ('screen', cur_col, tot_col, pix_col, num_col);
 if cur_col > tot_col then
 begin
 finished := true;
 end
 else
 begin
 finished := false;
 start_col := cur_col;
 end_col := cur_col + num_col - 1;
 cur_col := cur_col + num_col;

 end;

 out ('screen', &cur_col, &tot_col, &pix_col, &num_col);

 while not finished do
 begin
 indexc := 0;
 for cc := start_col to end_col do
 begin
 for r := 1 to pix_col do
 begin
 ncomplex.realp := cc * gap1 + bcorner.realp;
 ncomplex.imag := r * gap2 + bcorner.imag;
 result := 0;
 size := 0.0;
 original.realp := 0.0;
 original.imag := 0.0;
 while (result <= 21) and (size < 4.0) do
 begin
 a := original.realp * original.realp;
 b := original.realp * original.imag;
 c := original.imag * original.imag;
 original.realp := a-c+ncomplex.realp;
 original.imag := b+b+ncomplex.imag;
 size :=
original.realp*original.realp+original.imag*original.imag; inc
(result);
 end;
 results[indexc+r] := result;
 end;
 indexc := indexc+pix_col;
 end;
 out ('col', &start_col, &results);

 in ('screen', cur_col, tot_col, pix_col, num_col);
 if cur_col > tot_col then
 begin
 finished := true;
 end
 else
 begin
 start_col := cur_col;
 end_col := cur_col + num_col-1;
 cur_col := cur_col + num_col;
 end;

 out ('screen', &cur_col, &tot_col, &pix_col, &num_col); end;

end;

 The worker begins by INing the common information

 in ('stuff', gap1, gap2, bcorner);

followed by the screen information

 in ('screen', cur_col, tot_col, pix_col, num_col)

and determines if there is anything to compute

 if cur_col > tot_col then

if there isn't anything to do, the boolean variable finished will be set to true
and the compute loop will not be entered. If there is work to do, the worker
will obtain its starting columns and put it into the variable start_col. The
ending columns will be put into the variable end_col. The cur_col will be
increased the number of columns the worker is going to compute. Once all
of this has bee determined, the screen tuple is put back into tuple space.

 begin
 finished := true;
 end
 else
 begin
 finished := false;
 start_col := cur_col;
 end_col := cur_col + num+col - 1;
 cur_col := cur_col + num+col;
 end;
 out ('screen', &cur_col, &tot_col, &pix_col, &num_col);

 Notice that in either case of the if statement, the screen tuple is put back
into the tuple space. If this were not done, the other workers in the system
would block because they could not find the screen tuple. Therefore, it must
be put back into tuple space.

 In order to simplify the way results are sent back to the developer, a single
array was used that includes enough space for the total number of pixels a
worker computes. This includes the situation where multiple columns are
computed. The indexc variable does the job of coordinating where the
results will go in the array. The first column of pixels will use the locations 1-
200 while the next columns uses the location 201-400, etc. Indexc is

incremented by pix_col for every column computed.

 Once all columns have been computed for this particular group of
columns, they are put into tuple space with the

 out ('col', &start_col, &results);

command. The worker will then IN another screen tuple and begin again.

Complete Code

 The complete code for the system is

program devman;

{$N+,E+,F+}

uses dos, crt, both, work, graph;

const
 num_colu = 2;
 num_proc = 1;

type
 complex = record
 realp,
 imag : double;
 end;

 resu = array[1..200*num_colu] of integer;

var
 gap1,
 gap2 : double;
 bcorner : complex;

 i,
 j,
 cur_col,
 pix_col,
 start_col,
 num_col,
 tot_col : integer;
 results : resu;

 graphdriver,
 graphmode : integer;

procedure start_up;

begin

 exitsave := exitproc;
 exitproc := @myexit;

 master[1] := $00;
 master[2] := $00;
 master[3] := $C0;
 master[4] := $05;
 master[5] := $86;
 master[6] := $24;

 init_system;

end;

procedure adder;

type

 complex = record
 realp,
 imag : double;
 end;

var
 gap1, gap2,
 a,b,c,
 size : double;
 bcorner,
 ncomplex,
 original : complex;
 cur_col,
 tot_col,
 num_col,
 pix_col,
 cc,

 row,
 r,
 indexc,
 result,
 start_col,
 end_col : integer;
 results : array[1..200*num_colu] of integer;
 finished : boolean;

begin

 in ('stuff', gap1, gap2, bcorner);

 in ('screen', cur_col, tot_col, pix_col, num_col);
 if cur_col > tot_col then
 begin
 finished := true;
 end
 else
 begin
 finished := false;
 start_col := cur_col;
 end_col := cur_col + num_col - 1;
 cur_col := cur_col + num_col;
 end;
 out ('screen', &cur_col, &tot_col, &pix_col, &num_col);

 while not finished do
 begin
 indexc := 0;
 for cc := start_col to end_col do
 begin
 for r := 1 to pix_col do
 begin
 ncomplex.realp := cc * gap1 + bcorner.realp;
 ncomplex.imag := r * gap2 + bcorner.imag;
 result := 0;
 size := 0.0;
 original.realp := 0.0;
 original.imag := 0.0;
 while (result <= 21) and (size < 4.0) do
 begin
 a := original.realp * original.realp;
 b := original.realp * original.imag;
 c := original.imag * original.imag;

 original.realp := a-c+ncomplex.realp;
 original.imag := b+b+ncomplex.imag;
 size :=
original.realp*original.realp+original.imag*original.imag; inc
(result);
 end;
 results[indexc+r] := result;
 end;
 indexc := indexc+pix_col;
 end;
 out ('col', &start_col, &results);

 in ('screen', cur_col, tot_col, pix_col, num_col);
 if cur_col > tot_col then
 begin
 finished := true;
 end
 else
 begin
 start_col := cur_col;
 end_col := cur_col + num_col-1;
 cur_col := cur_col + num_col;
 end;
 out ('screen', &cur_col, &tot_col, &pix_col, &num_col); end;

end;

procedure plot (col : integer; results : resu);

var i,j : integer;
 color : word;

begin

for j := 0 to num_col-1 do
 for i := 1 to 200 do
 begin
 if results[i+j*200] < 20 then color := 1;
 if results[i+j*200] > 20 then color := 9;
 if results[i+j*200] > 40 then color := 2;
 if results[i+j*200] > 60 then color := 10;
 if results[i+j*200] > 80 then color := 4;
 if results[i+j*200] > 100 then color := 12;

 if results[i+j*200] > 120 then color := 5;
 if results[i+j*200] > 140 then color := 13;
 if results[i+j*200] > 160 then color := 8;
 if results[i+j*200] > 180 then color := 7;
 if results[i+j*200] > 200 then color := 0;

 putpixel (col+j , i, color);
 end;

end;

begin

 start_up;

 graphdriver := vga;
 graphmode := vgahi;
 initgraph (graphdriver, graphmode, 'a:');

 gap1 := 2.50 / 320;
 gap2 := 2.50 / 200;
 bcorner.realp := -2.0;
 bcorner.imag := -1.25;

 cur_col := 1;
 tot_col := 320;
 pix_col := 200;
 num_col := num_colu;

 for i := 1 to num_proc do
 begin
 eval ('work', &adder);
 out ('stuff', &gap1, &gap2, &bcorner);
 end;

 out ('screen', &cur_col, &tot_col, &pix_col, &num_col);

 for i := 1 to tot_col div num_col do
 begin
 in ('col', start_col, results);
 plot (start_col, results);
 end;

 in ('screen', cur_col, tot_col, pix_col, num_col);

 readln;

 { system_shutdown }
 close_system

end.

 This code is contained on the samples disk provided with the system.
Convert it to standard Turbo Pascal, compile it, and run it for an interesting
result. In order to understand what the code is doing exactly, follow the
code for a single developer and a single worker. Notice the changes that
take place in the screen tuple. This screen tuple is the main controller of the
entire program.

 Once you have the code operational, try changing some of the initial
values to obtain different pictures. The color codes (numbers) used in the
plotting routine can also be change to different sequences. These number
were taken directly from those in the Turbo Pascal Reference Manual.

